DOI QR코드

DOI QR Code

Classification of Biological Effect of 1,763 MHz Radiofrequency Radiation Based on Gene Expression Profiles

  • Im, Chang-Nim (Genomics Core Laboratory and Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Kim, Eun-Hye (Genomics Core Laboratory and Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Park, Ae-Kyung (Genomics Core Laboratory and Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Park, Woong-Yang (Genomics Core Laboratory and Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
  • Published : 2010.03.31

Abstract

Radiofrequency (RF) radiation might induce the transcription of a certain set of genes as other physical stresses like ionizing radiation and UV. To observe transcriptional changes upon RF radiation, we exposed WI-38, human lung fibroblast cell to 1763 MHz of mobile phone RF radiation at 60 W/kg of specific absorption rate (SAR) for 24h with or without heat control. There were no significant changes in cell numbers and morphology after exposure to RF radiation. Using quantitative RT-PCR, we checked the expression of three heat shock protein (HSP) (HSPA1A, HSPA6 and HSP105) and seven stress-related genes (TNFRSF11B, FGF2, TGFB2, ITGA2, BRIP1, EXO1, and MCM10) in RF only and RF/HS groups of RF-exposed cells. The expressions of three heat shock proteins and seven stress-related genes were selectively changed only in RF/HS groups. Based on the expression of ten genes, we could classify thermal and non-thermal effect of RF-exposure, which genes can be used as biomarkers for RF radiation exposure.

Keywords

References

  1. Chauhan, V., Qutob, S.S., Lui, S., Mariampillai, A., Bellier, P.V., Yauk, C.L., Douglas, G.R., Williams, A., and McNamee, J.P. (2007). Analysis of gene expression in two human-derived cell lines exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field. Proteomics 7, 3896-3905. https://doi.org/10.1002/pmic.200700215
  2. Del Vecchio, G., Giuliani, A., Fernandez, M., Mesirca, P., Bersani, F., Pinto, R., Ardoino, L., Lovisolo, G.A., Giardino, L., and Calza, L. (2009). Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells. Neurosci Lett. 455, 173-177. https://doi.org/10.1016/j.neulet.2009.03.061
  3. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906-914. https://doi.org/10.1093/bioinformatics/16.10.906
  4. Genschel, J., Bazemore, L.R., and Modrich, P. (2002). Human exonuclease I is required for 5' and 3' mismatch repair. J. Biol. Chem. 277, 13302-13311. https://doi.org/10.1074/jbc.M111854200
  5. Huang, T.Q., Lee, M.S., Oh, E.H., Kalinec, F., Zhang, B.T., Seo, J.S., and Park, W.Y. (2008). Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells. Int. J. Radiat. Biol. 84, 909-915. https://doi.org/10.1080/09553000802460123
  6. Huang, T.Q., Lee, M.S., Oh, E.H., Zhang, B.T., Seo, J.S., and Park, W.Y. (2008). Molecular responses of Jurkat T-cells to 1763 MHz radiofrequency radiation. Int. J. Radiat. Biol. 84, 734-741. https://doi.org/10.1080/09553000802317760
  7. Kumaraswamy, E., and Shiekhattar, R. (2007). Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol. Cell Biol. 27, 6733-6741. https://doi.org/10.1128/MCB.00961-07
  8. Lee, J.S., Huang, T.Q., Kim, T.H., Kim, J.Y., Kim, H.J., Pack, J.K., and Seo, J.S. (2006). Radiofrequency radiation does not induce stress response in human T-lymphocytes and rat primary astrocytes. Bioelectromagnetics 27, 578-588. https://doi.org/10.1002/bem.20235
  9. Lee, S., Johnson, D., Dunbar, K., Dong, H., Ge, X., Kim, Y.C., Wing, C., Jayathilaka, N., Emmanuel, N., Zhou, C.Q., Gerber, H.L., Tseng, C.C., and Wang, S.M. (2005). 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 579, 4829-4836. https://doi.org/10.1016/j.febslet.2005.07.063
  10. Luukkonen, J., Hakulinen, P., Maki-Paakkanen, J., Juutilainen, J., and Naarala, J. (2009). Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat. Res. 662, 54-58. https://doi.org/10.1016/j.mrfmmm.2008.12.005
  11. McNamee, J.P., and Chauhan, V. (2009). Radiofrequency radiation and gene/protein expression: a review. Rad. Res. 172, 265-287. https://doi.org/10.1667/RR1726.1
  12. Qutob, S.S., Chauhan, V., Bellier, P.V., Yauk, C.L., Douglas, G.R., Berndt, L., Williams, A., Gajda, G.B., Lemay, E., Thansandote, A., and McNamee, J.P. (2006). Microarray Gene Expression Profiling of a Human Glioblastoma Cell Line Exposed In Vitro to a 1.9 GHz Pulse-Modulated Radiofrequency Field. Rad. Res. 165, 636-644. https://doi.org/10.1667/RR3561.1
  13. Sanchez, S., Haro, E., Ruffie, G., Veyret, B., and Lagroye, I. (2007). In vitro study of the stress response of human skin cells to GSM-1800 mobile phone signals compared to UVB radiation and heat shock. Rad. Res. 167, 572-580. https://doi.org/10.1667/RR0802.1
  14. Takashima, Y., Hirose, H., Koyama, S., Suzuki, Y., Taki, M., and Miyakoshi, J. (2006). Effects of continuous and intermittent exposure to RF fields with a wide range of SARs on cell growth, survival, and cell cycle distribution. Bioelectromagnetics 27, 392-400. https://doi.org/10.1002/bem.20220
  15. Thirunavukkarasu, K., Miles, R.R., Halladay, D.L., Yang, X., Galvin, R.J., Chandrasekhar, S., Martin, T.J., and Onyia, J.E. (2001). Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects. J. Biol. Chem. 276, 36241-36250. https://doi.org/10.1074/jbc.M104319200
  16. Tian, F., Nakahara, T., Wake, K., Taki, M., and Miyakoshi, J. (2002). Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg but not at 5W/kg in human glioma MO54 cells. Int. J. Radiat. Biol. 78, 433-440. https://doi.org/10.1080/09553000110115649
  17. Verschaeve, L. (2009). Genetic damage in subjects exposed to radiofrequency radiation. Mutat. Res. 681, 259-270. https://doi.org/10.1016/j.mrrev.2008.11.002
  18. Wang, J., Koyama, S., Komatsubara, Y., Suzuki, Y., Taki, M., and Miyakoshi, J. (2006). Effects of a 2450 MHz high-frequency electromagnetic field with a wide range of SARs on the Induction of heat-shock proteins in A172 cells. Bioelectromagnetics 27, 479-486. https://doi.org/10.1002/bem.20226
  19. Yu, Y., Yao, K., Wu, W., Wang, K., Chen, G., and Lu, D. (2008). Effects of exposure to 1.8 GHz radiofrequency field on the expression of Hsps and phosphorylation of MAPKs in human lens epithelial cells. Cell Res. 18, 1233-1235. https://doi.org/10.1038/cr.2008.306
  20. Zhao, R., Zhang, S., Xu, Z., Ju, L., Lu, D., and Yao, G. (2007). Studying gene expression profile of rat neuron exposed to 1800 MHz radiofrequency electromagnetic fields with cDNA microassay. Toxicology 235, 167-175. https://doi.org/10.1016/j.tox.2007.03.015

Cited by

  1. Radiofrequency treatment induces fibroblast growth factor 2 expression and subsequently promotes neocollagenesis and neoangiogenesis in the skin tissue vol.32, pp.8, 2017, https://doi.org/10.1007/s10103-017-2238-2