References
- Bishop, C.M., Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.
- Haykin, S., Neural Networks and Learning Machines, Third Edition, Pearson Inc, ISBN-10:0-13-147139-2, 2008.
-
Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Lautrup, B., Norskov, L., Olsen, O.H., and Petersen, S. B., “Protein secondary structures and homology by neural networks: The
$\alpha$ -helices in rhodopsin”, FEBS Letters, 241, pp.223–228, 1988. https://doi.org/10.1016/0014-5793(88)81066-4 - Holley, L.H., and Karplus, M., “Protein secondary structure prediction with a neural network”, Proc. Nat. Acad. Sci. USA, 86, pp.152–156, 1989. https://doi.org/10.1073/pnas.86.1.152
- Kneller, D.G., Cohen, F.E., and Langridge, R., “Improvements in protein secondary structure prediction by an enhanced neural network”, J. Mol. Biol., 214, pp.171–182, 1990. https://doi.org/10.1016/0022-2836(90)90154-E
- Stolorz, P., Lapedes, A., and Xia, Y., “Predicting protein secondary structure using neural net and statistical methods”, J. Mol. Biol., 225, pp.363–377, 1992. https://doi.org/10.1016/0022-2836(92)90927-C
- Rost B., and Sander, C., “Improved prediction of protein secondary structure by use of sequence profiles and neural networks”, Proc. Nat. Acad. Sci. USA, 90, pp.7558–7562, 1993. https://doi.org/10.1073/pnas.90.16.7558
- Rost B., and Sander, C., “Prediction of protein secondary structure at better than 70% accuracy”, J. Mol. Biol., 232, pp.584–599, 1993. https://doi.org/10.1006/jmbi.1993.1413
- Jones, D.T., “Protein secondary structure prediction based on position-specific scoring matrices”, J. Mol. Biol., 292, pp.195–202, 1999. https://doi.org/10.1006/jmbi.1999.3091
- Petersen, T.N., Lundegaard, C., Nielsen, M., Bohr, H., Bohr, J., Brunak, S., Gippert, G.P., and Lund, O., “Prediction of protein secondary structure at 80% accuracy”, Proteins, 41, pp.17–20, 2000. https://doi.org/10.1002/1097-0134(20001001)41:1<17::AID-PROT40>3.0.CO;2-F
- Zhang, X., Mesirov, J., and Waltz, D., “Hybrid system for protein secondary structure prediction”, J. Mol. Biol., 225, pp.1049–1063, 1992. https://doi.org/10.1016/0022-2836(92)90104-R
- Maclin, R., and Shavlik, J., “Using knowledge-based neural networks to improve algorithms: Refining the Chou–Fasman algorithm for protein folding”, Machine Learning, 11, pp.195–215, 1993.
- Riis, S.K., and Krogh, A., “Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments”, J. Comput.Biol., 3, pp.163–183, 1996. https://doi.org/10.1089/cmb.1996.3.163
- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, L.J., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucl. Acids Res., 25:3389–3402, 1997. https://doi.org/10.1093/nar/25.17.3389
- McGuffin, L.J., Bryson, K., and Jones, J.T., “The PSIPRED protein structure prediction server”, Bioinformatics, 16, pp.404–405, 2000. https://doi.org/10.1093/bioinformatics/16.4.404
- Sim, J., Kim, S.-Y., and Lee, J., “PPRODO: prediction of protein domain boundaries using neural network”, Proteins: Structure, Function, and Bioinformatics 59, pp. 627-632, 2005. https://doi.org/10.1002/prot.20442
- Kim, H., and Park, H., “Protein secondary structure prediction based on an improved support vector machines approach”, Protein Eng. 16, pp.553-560, 2003. https://doi.org/10.1093/protein/gzg072
- Kim, H., and Park, H., “Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor”, Proteins: Structure, Function, and Bioinformatics 54, pp.557-562, 2004.
- Lee, J., Kim, S.-Y., Joo, K., Kim, I., and Lee, J., “Prediction of protein tertiary structure using PROFESY, a novel method based on fragment assembly and conformational space annealing”, Proteins: Structure, Function, and Bioinformatics 56, pp.704-714, 2004. https://doi.org/10.1002/prot.20150
- Ginalski, K., et al., “ORFeus: detection of distant homology using sequence profiles and predicted secondary structure,” Nucleic Acids Res. 31, pp.3804-3807, 2003. https://doi.org/10.1093/nar/gkg504
- Sim, J., Kim, S.-Y., Lee, J., and Yoo, A., “Predicting the threedimensional structures of proteins: combined alignment approach”, J. Korean Phys. Soc. 44, pp.611-616, 2004. https://doi.org/10.3938/jkps.44.611
- Joo, K., Lee, J., Kim, S.-Y., Kim, I., and Lee, S.J., “Profile-based nearest neighbor method for pattern recognition”, J. Korean Phys. Soc. 44, pp.599-604, 2004. https://doi.org/10.3938/jkps.44.599
- Joo, K., Kim, I., Kim, S.-Y. Lee, J., and Lee, S.J., “Prediction of the secondary structures of proteins by using PREDICT, a nearest neighbor method on pattern space”, J. Korean Phys. Soc. 45, pp.1441-1449, 2004.
- Qian, N., and Sejnowski, T.J., “Predicting the secondary structure of globular proteins using neural network models”, J. Mol. Biol., 202, pp.865–884, 1988. https://doi.org/10.1016/0022-2836(88)90564-5
- Chou, P.Y., and Fasman, G.D., “Prediction of the secondary structure of proteins from their amino acid sequence”, Adv. Enzymol. Relat. Areas Mol. Biol., 47, pp.45–148, 1978.
- Protein Data Bank (PDB): http://www.rcsb.or
Cited by
- Position coordinate representation of flying arrow and analysis of its performance indicator vol.14, pp.4, 2016, https://doi.org/10.1007/s12555-015-0191-z