DOI QR코드

DOI QR Code

미니돼지에서 정상 폐 환기/관류 신티그라피

Normal Lung Ventilation/Perfusion Scintigraphy in Miniature Pigs

  • Kim, Se-Eun (College of Veterinary Medicine, Chonnam National University) ;
  • Han, Ho-Jae (College of Veterinary Medicine, Chonnam National University) ;
  • Shim, Kyung-Mi (Department of Radiology, Nambu University)
  • 투고 : 2010.10.14
  • 심사 : 2010.11.17
  • 발행 : 2010.11.30

초록

미니돼지에서 폐 환기/관류 신티그라피를 실시한 결과 환기스캔에서는 기능적 분포는 왼쪽 폐가 44.2%, 오른쪽 폐에서는 56.2%로 나타났으며, 관류스캔에서는 왼쪽 폐가 46.87%, 오른쪽 폐가 54.97% 임을 확인할 수 있었고 사람의 폐용적과 유사한 결과를 보임을 확인할 수 있었다. 또한 다른 방사성가스보다 짧은 시간을 필요로 하며 기계적 환기로도 스캔이 가능한 Technegas로 환기 스캔을 실시하여 미니돼지의 마취시간을 줄 일 수 있었으며 미니돼지에서 더 용이하게 폐기능을 측정할 수 있었다. 따라서 본 연구를 통해 폐 환기/관류 신티그라피가 미니돼지에서 정상 폐기능 및 폐질환과 관련된 실험을 할 때 폐기능을 측정하는 좋은 진단법이 될 수 있으며 미니돼지의 정상 폐기능에 관한 연구가 앞으로 폐질환과 관련된 미니돼지의 실험에 대한 정보를 제공할 수 있으리라 생각된다.

Miniature pigs are widely used in experiments related to pulmonary disease because of their similarities with humans. However, there are not enough data about normal lung function in miniature pigs. Thus, in this study, we investigated normal lung function in miniature pigs with lung ventilation/perfusion scintigraphy and evaluated the availability of this method. Three male miniature pigs weighing 30-35 kg were used. After general anesthesia, ventilation scintigraphy was performed with 100 MBq of $^{99m}Tc$-pertechnetate (${O_4}^-$), after which perfusion scintigraphy was performed with intravenous injection of $^{99m}Tc$-macro aggregated albumin (MAA). The functional contribution of the right lung was about 55%, and left lung was about 45%, similar to humans. Lung ventilation/perfusion scintigraphy was very useful in evaluating the normal lung function of miniature pigs because it was a non-invasive procedure (no tissue damage was involved), took a short time and was easy to perform. In conclusion, miniature pigs are similar to humans in functional contributions of the lung, and this method will be helpful in future pulmonary disease studies involving miniature pigs.

키워드

참고문헌

  1. Baile, E. M., G. G. King, N. L. Muller, Y. D'Yachkova, E. E. Coche, P. D. Pare, and J. R. Mayo. 2000. Spiral computed tomography is comparable to angiography for the diagnosis of pulmonary embolism. Am. J. Respir. Crit. Care Med. 161, 1010-1015. https://doi.org/10.1164/ajrccm.161.3.9904067
  2. Bajc, M., U. Bitzen, B. Olsson, V. Perez de Sa, J. Palmer, and B. J. Jonson. 2002. Lung ventilation/perfusion SPECT in the artificially embolized pig. Nucl. Med. 43, 640-647.
  3. Burkill, G. J., J. R. Bell, and S. P. Padley. 1999. Survey on the use of pulmonary scintigraphy, spiral CT and conventional pulmonary angiography for suspected pulmonary embolism in the British Isles. Clin. Radiol. 54, 807-810. https://doi.org/10.1016/S0009-9260(99)90683-9
  4. Choi, Y. H., S. E. Kim, D. S. Lee, J. K. Chung, M. C. Lee, K. Y. Kim, C. S. Koh, and S. S. Koong. 1990. Comparison of lung ventilation scan using technegas and $^{99m}Tc$-DTPA aerosol. Korean J. Nucl. Med. 24, 237-243.
  5. Kasper, W., T. Meinertz, B. Henkel, D. Eissner, K. Hahn, T. Hofmann, A. Zeiher, and H. Just. 1986. Echocardiographic findings in patients with proved pulmonary embolism. Am. Heart J. 112, 1284-1290. https://doi.org/10.1016/0002-8703(86)90361-3
  6. Kirschvink, N. and P. Reinhold. 2008. Use of alternative animals as asthma models. Curr. Drug Targets 9, 470-484. https://doi.org/10.2174/138945008784533525
  7. Koh, C. S. 1997. Nuclear medicine, pp. 421-438, 2nd eds., Korea Medical Book Publisher, Seoul.
  8. Luna, C. M., O. Sibila, C. Agusti, and A. Torres. 2009. Animal models of ventilator-associated pneumonia. Eur. Respir. J. 33, 182-188. https://doi.org/10.1183/09031936.00046308
  9. Maki, D. D., W. B. Gefter, and A. Alavi. 1999. Recent advances in pulmonary imaging. Chest 116, 1388-1402. https://doi.org/10.1378/chest.116.5.1388
  10. Kwak, M. H., J. O. Oh, J. O. Jeong, K. C. Kim, H. S. Kim, H. C. Lee, S. C. Lee, H. C. Gwon, H. J. Kim, K. P. Hong, J. E. Park, J. D. Seo, W. R. Lee, and S. W. Park. Role of echocardiography as a screening test in patients with suspected pulmonary embolism. Korean Circulation J. 31, 500-506.
  11. Palmer, J. U. Bitzen, B. Jonson and M. J. Bajc. 2001. Comprehensive ventilation/perfusion SPECT. Nucl. Med. 42, 1288-1294.
  12. Park, B. J., P. W. Park, Y. M. Shim, Y. T. Lee, K. H. Park, J. G. Kim, W. S. Kim, and K. I. Sung. 2009. Pulmonary embolectomy for treatment of pulmonary embolism. Korean J. Thorac. Cardiovasc. Surg. 42, 492-496.
  13. Pavan, D., G. L. Nicolosi, F. Antonini-Canterin, and D. Zanuttini. 1998. Echocardiography in pulmonary embolism disease. Int. J. Cardiol. 65, S87-S90. https://doi.org/10.1016/S0167-5273(98)00071-0
  14. Rimkus, D. S. and W. L. Ashburn. 1990. Lung ventilation scanning with a new carbon particle radioaerosol (Technegas). Preliminary patient studies. Clin. Nucl. Med. 15, 222-226. https://doi.org/10.1097/00003072-199004000-00002
  15. Smith, A. C. and M. M. Swindle. 2006. Preparation of swine for the laboratory. ILAR J. 47, 358-363. https://doi.org/10.1093/ilar.47.4.358
  16. Sullivan, P. J., W. M. Burke, W. M. Burch, and F. E. Lomas. 1988. A clinical comparison of Technegas and xenon-133 in 50 patients with suspected pulmonary embolus. Chest 94, 300-304. https://doi.org/10.1378/chest.94.2.300
  17. Tiel-van Buul, M. M. C. and J. F. Verzijlbergen. 2004. Ventilation-perfusion lung scintigraphy. Imaging Decisions 4, 3-14.