DOI QR코드

DOI QR Code

Effect of Water Temperature on the Growth of Triops longicaudatus (LeConte) (Notostraca: Triopsidae)

수온이 긴꼬리투구새우(배갑목: 투구새우과)의 생장에 미치는 영향

  • Kwon, Soon-Jik (Department of Biology, College of Natural Sciences, Andong National University) ;
  • Jun, Yung-Chul (Doohee Institute of Ecological Research (DIER), Korea Ecosystem Service Inc. (KES)) ;
  • Park, Jae-Heung (Doohee Institute of Ecological Research (DIER), Korea Ecosystem Service Inc. (KES)) ;
  • Won, Doo-Hee (Doohee Institute of Ecological Research (DIER), Korea Ecosystem Service Inc. (KES)) ;
  • Seo, Eul-Won (Department of Biology, College of Natural Sciences, Andong National University) ;
  • Lee, Jong-Eun (Department of Biology, College of Natural Sciences, Andong National University)
  • 권순직 (안동대학교 자연과학대학 생명과학과) ;
  • 전영철 ((주)생태조사단 부설 두희생태연구소) ;
  • 박재흥 ((주)생태조사단 부설 두희생태연구소) ;
  • 원두희 ((주)생태조사단 부설 두희생태연구소) ;
  • 서을원 (안동대학교 자연과학대학 생명과학과) ;
  • 이종은 (안동대학교 자연과학대학 생명과학과)
  • Received : 2010.08.18
  • Accepted : 2010.10.27
  • Published : 2010.11.30

Abstract

Growth and other biological processes in aquatic organisms are particularly dependent on water temperatures. This study examined the effects of water temperature on the growth of Triops longicaudatus. The influence of water temperature fluctuations was that growth rate was increased at higher temperatures. The mean carapace length was 5.7 (${\pm}2.1$) mm in a water temperature of $20^{\circ}C$ and 7.5 (${\pm}0.5$) mm in a water temperature of $28^{\circ}C$ on the 14th day after submergence. It was 6.9 (${\pm}2.8$) mm in a water temperature of $20^{\circ}C$ and 7.8 (${\pm}2.0$) mm in a water temperature of $28^{\circ}C$ on the 21st day after submergence. The mean carapace length grew rapidly within 14 days after submergence, but increase in carapace length beyond this time was slow. The influence of water depth fluctuations was low as the mean carapace length was 9.3 (${\pm}2.1$) mm under a water depth of 80 mm and 9.5 (${\pm}1.3$) mm under a water depth of 190 mm on the 19th day after submergence. Biomass showed that the carapace length of 5, 10, 16 and 20 mm was a dry-weight of 1.1 (${\pm}0.3$), 18.0 (${\pm}3.7$), 26.0 (${\pm}0.0$) and 52.3 (${\pm}4.0$) mg respectively. The number of eggs increased rapidly with increments in carapace length. The mean number of eggs was 20 (${\pm}0.0$) at a carapace length of 7.0 mm, but at a carapace length of 17.0 mm, the mean number of eggs was 560 (${\pm}0.0$). The results suggested that differences in water temperature accounted for the differences in length of the carapace and the number of eggs.

수서생물에 있어서 생장이나 기타 생물학적 특성들은 수온의 영향을 받는다. 본 연구는 긴꼬리투구새우의 생장에 미치는 수온의 영향을 알아보기 위하여 수행되었다. 수온에 따른 생장률실험에서 긴꼬리투구새우는 상대적으로 높은 온도에서 생장률이 빠른 것으로 나타났다. 침수 후 14일이 경과하면 갑각길이는 $20^{\circ}C$에서 5.7(${\pm}2.1$) mm, $28^{\circ}C$에서 7.5(${\pm}0.5$) mm로 나타났다. 그리고 21일이 경과하면 $20^{\circ}C$에서 6.9(${\pm}2.8$) mm, $28^{\circ}C$에서 7.8(${\pm}2.0$) mm로 나타났다. 또한 침수 후 14일경까지는 빠르게 생장하는 것으로 나타났으나, 이후에는 생장이 둔화되는 것으로 나타났다. 수심(80 mm, 190 mm)에 따른 생장률실험에서 침수 후 19일이 경과하였을 때 평균 갑각길이는 수심 80 mm에서 9.3(${\pm}2.1$) mm, 수심 190 mm에서 9.5(${\pm}1.3$) mm로 나타나 수심의 차이에 의한 영향은 적은 것으로 확인되었다. 갑각길이에 따른 생체량의 분석 결과 길이가 5 mm일 때 건중량은 1.1(${\pm}0.3$) mg, 10 mm일 때 18.0(${\pm}3.7$) mg, 16 mm일 때 26.0(${\pm}0.0$) mg, 20 mm일 때 52.3(${\pm}4.0$) mg으로 나타났다. 생산력과 관련하여 갑각길이가 증가하면 알의 개수도 급격하게 증가하였는데, 갑각길이가 7.0 mm인 개체의 경우 20(${\pm}0.0$)개이고, 갑각길이가 17.0 mm인 개체의 경우 560(${\pm}0.0$)개의 알을 가지고 있는 것으로 나타났다. 결과적으로 온도는 생장과 생산력의 척도인 갑각길이와 알의 수에 영향을 미치는 것으로 확인되었다.

Keywords

References

  1. Brendonck, L. 1996. Diapause, quiescence, hatching requirements: What we can learn from large branchiopods (Crustacea: Branchiopoda: Anostraca, Notostraca, Conchostraca). Hydrobiol. 320, 85-97. https://doi.org/10.1007/BF00016809
  2. Fry-Obrien, L. L. and M. S. Mulla. 1996. Optimal conditions for rearing the tadpole shrimp, Triops longicaudatus (Notostraca: Triopsidae), a biological control agent against mosquitoes. J. American Control Association 12 (Part 1), 446-453.
  3. Gallepp, G. W. 1977. Responses of caddisfly larvae (Brachycentrus sp.) to temperature, food availability and current velocity. Am. Midl. Nat. 98, 59-84. https://doi.org/10.2307/2424715
  4. Harper, S. L. and C. L. Reiber. 2006. Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus. J. Exp. Biol. 209, 1639-1650. https://doi.org/10.1242/jeb.02180
  5. Kelber, K. P. 1999. Triops cancriformis (Crustacea, Notostraca): Einbemerkenswertes Fossil aus der Trias Mitteleuropas. Trias, eine ganz andere Welt: Mitteleuropa im fruhen Erdmittelalter, pp. 383-394.
  6. Kwon, S. J., H. Y. Kwon, Y. C. Jun. J. E. Lee, and D. H. Won. 2009. Effect of temperature on hatching rate of Triops longicaudatus (Triopsidae, Notostraca). Korean J. Limnol. 42, 32-38.
  7. Kwon, S. J., Y. C. Jun. J. H. Park, D. H. Won, E. W. Seo, and J. E. Lee. 2010. Distribution and habitat characteristics of tadpole shrimp (Crustacea: Notostraca: Triops longicaudatus (LeConte)) in Korea. Korean J. Limnol. 43, 142-149.
  8. Linder, F. 1952. Contributions to the morphology and taxonomy of the Branchiopoda Notostraca, with special reference to the North American species. Proc. U.S. natn Mus. 102, 1-69. https://doi.org/10.5479/si.00963801.102-3291.1
  9. Longhurst, A. R. 1955. A review of the Notostraca. Bull. Brit. Mus. Nat. Hist. (Zool.) 3, 1-57.
  10. Resh, V. H. and D. M. Rosenberg. 1984. The ecology of aquatic insects. pp. 625, Praeger, New York.
  11. Seaman, M. T., D. J. Kok, B. J. von Schichting, and A. J. Kruger. 1991 Natural growth and reproduction in Triops granarius (Lucas) (Crustacea: Notostraca). Hydrobiologia 212, 87-94. https://doi.org/10.1007/BF00025991
  12. Scholnick, D. A. 1995. Sensitivity of metabolic rate, growth, and fecundity of tadepole shrimp Triops longicaudatus to eviromental variation. Biol. Bull. 189, 22-28. https://doi.org/10.2307/1542197
  13. Su, T. and M. S. Mulla. 2001. Ecological of nutritional factors and soil addition on growth, longevity and fecundity of the tadpole shrimp Triops newberryi (Notostraca: Triopside), a potential biological control agent of immature mosquitoes. J. Vector Ecol. 26, 43-50.
  14. Sweeney, B. W. 1984. Factors influencing life-history patterns of aquatic insects. pp. 56-100 In The ecology of aquatic insects. 625 pp.(V. H. Resh and D. H. Rosenberg, eds). Praeger scientific, New York.
  15. Takahashi, F. 1977. Pioneer life of the tadpole shrimps, Triops spp. (Notostraca: Triopsidae). Appl. Entomol. and Zool. 12, 104-117.
  16. Thiel, H. 1963. Zur Entwicklung von Triops cancriformis BOSC. Zool. Anz. 170, 62-68.
  17. Vannote, R. L. and B. W. Sweeney. 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115, 667-695. https://doi.org/10.1086/283591
  18. Ward, J. V. and J. A. Stanford. 1982. Thermal responses in the evolutionary ecology of aquatic insects. Ann. Rev. Ent. 27, 97-117. https://doi.org/10.1146/annurev.en.27.010182.000525
  19. Weeks, S. C. and C. Sassaman. 1990. Competition phenotypically variable and uniform populations of the tadpole shrimp Triops longicaudatus (Notostraca: Triopsidae). Oecologia. 82, 552-559. https://doi.org/10.1007/BF00319800
  20. Williams, D. D. and B. W. Feltmate. 1992. Aquatic insects. pp. 358, CAB International.
  21. Yoon, S. M., W. Kim, and H. S. Kim. 1992. Redescription of Triops longicaudatus (LeConte, 1846) (Notostraca, Triopsidae) from Korea. Korean J. Syst. Zool. Special Issue 3, 59-66.
  22. Zierold, T. 2006. Morphological variation and genetic diversity of Triops cancriformis (Crustacea: Notostraca) and their potential for understanding the influence of postglacial distribution and habitat fragmentation. Ph. D. Thesis, Technische Universitaet Bergakademine Freiberg, Freiberg, Germany.