DOI QR코드

DOI QR Code

Protection Effects of Allylmercaptan, Metabolite of Garlic on Endothelial Cell Injury Induced by Oxidized Low Density Lipoprotein

산화된 low density lipoprotein (LDL)에 의해 유도된 내피세포의 손상에 대한 마늘 대사산물인 allylmercaptan의 보호 효과

  • Yang, Seung-Taek (Department of Food Science and Biotechnology, Kyungsung Universtiy)
  • 양승택 (경성대학교 식품생명공학과)
  • Received : 2010.09.27
  • Accepted : 2010.11.25
  • Published : 2010.11.30

Abstract

Oxidation of low density lipoprotein (LDL) has been recognized as an important role in the initiation and progression of atherosclerosis. In this study, effects of allylmercaptan, a major metabolite compound of garlic, was studied on endothelial cell injury induced by oxidized low density lipoprotein (ox-LDL). The antioxidative activity of allylmercaptan was investigated by monitoring a thiobarbituric acid substance (TBARS). Allylmercaptan inhibited LDL oxidation induced by $Cu^{2+}$ at concentrations of 0.1, 1 and 10 mM in a dose dependent manner. Lactate dehydrogenase (LDH) release, as an index of cell injury, and intracellular glutathione levels were determined. Pulmonary artery endothelial cells were preincubated with allylmercaptan at $37^{\circ}C$ and 5% $CO_2$ for 24 hr, washed, and then exposed to 0.1 mg/ml oxidized LDL for 24 hr. Preincubation of endothelial cells with allylmercaptan significantly prevented the LDH release and depletion of GSH. Peroxides were measured directly in 24 well plates using a fluorometric assay. Allylmercaptan inhibited release of peroxides induced by ox-LDL in pulmonary artery endothelial cells. In a free system, allylmercaptan was shown to scavenge hydrogen peroxide. The data indicate that allylmercaptan can protect pulmonary artery endothelial cells from injury caused by oxidized LDL, and suggest that allylmercaptan may be useful for the prevention of atherosclerosis.

Low density lipoprotein (LDL)의 산화는 동맥경화의 유발과 진행에 결정적 역할을 하는 것으로 알려져 있다. 본 연구에서는 마늘의 주요 대사산물인 allylmercaptan의 산화 low density lipoprotein에 의해 손상된 내피세포의 보호효과에 대하여 실험하였다. Allylmercaptan의 항산화 활성은 thiobarbituric acid substance (TBARS)로 측정하였다. Allylmercaptan은 0.1, 1 및 10 mM의 농도에서 $Cu^{2+}$에 의해 유도된 LDL의 산화를 용량의존적으로 억제하였다. 폐동맥 내피세포를 $37^{\circ}C$, 5% $CO_2$ 상태에서 24시간 동안 미리 배양시킨 후 세측한 다음 다시 24시간 동안 0.1 mg/ml oxidized LDL (ox-LDL)을 첨가하여 배양하였다. 이 때 ox-LDL이 Lactate dehydrogenase (LDH)의 방출과 glutathione (GSH)를 감소시키는 원인으로 세포막 손상의 지표로 LDH와 GSH 함량을 조사하였다. 본 실험 결과 allylmercaptan을 일정 농도 별로 endothelial cell에 첨가하여 배양했을 때 LDH의 방출과 GSH의 감소를 현저하게 억제하였다. Peroxide를 형광분석법으로 24 well plate에서 직접 측정한 결과 allylmercaptan이 폐동맥 내피세포 내에서 ox-LDL 유도 peroxide의 방출을 억제하였다. 그리고 allylmercaptan은 과산화수소의 소거능도 있었다. 본 실험결과 allylmercaptan은 ox-LDL 유도 폐동맥 내피세포를 보호할 수 있었으므로 allylmercaptan은 동맥경화의 예방에 유용할 것으로 생각된다.

Keywords

References

  1. Block, E. 1992. The organosulfur chemistry of the genus Allium implications for the organic chemistry of sulfur. Angew Chem. Int. Ed. Engl. 31, 1135-1178. https://doi.org/10.1002/anie.199211351
  2. Bonetti, P. O., L. O. Lerman, and A. Lerman. 2003. Endothelial dysfunction. A marker of atherosclerotic risk. Artherioscler. Thromb. Uasc. Biol. 23, 188-175.
  3. Cai, H. and D. G. Harrison. 2001. Endlothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Crit. Res. 87, 840-844.
  4. Cathcart, M. K., D. W. Morel, and G. M. Chisolm. 1985. Monocytes and neutrophiles oxidized low density lipoprotein making it cytotoxic. J. Leukocyte Biol. 38, 341-350.
  5. Cox, D. A. and M. L. Cohen. 1996. Effects of oxidized low density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis. Pharmacol. Rev. 48, 3-19.
  6. Egon-Schmind, C., R. Eckardm, and E. H. Kemper. 1992. Metabolism of garlic constituents in the isolated perfused rat liver. Planta Med. 58, 301-305. https://doi.org/10.1055/s-2006-961471
  7. Esterbauer, H., G. Strigel, H. Puhl, and M. Rotheneder. 1989. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun. 6, 67-75. https://doi.org/10.3109/10715768909073429
  8. Geng, Z., Y. Rong, and B. H. S. Lau. 1997. S-Allylcysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic. Biol. Med. 23, 345-350 https://doi.org/10.1016/S0891-5849(97)00006-3
  9. Gebhardt, R. and H. Beck. 1996. Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures. Lipids 31, 1269-1276. https://doi.org/10.1007/BF02587912
  10. Greenspan, P. and R. L. Gutman. 1993. Detection by nile red of agarose fell electrophoresed native and modified low density lipoprotein. Electrophoresis 14, 65-68. https://doi.org/10.1002/elps.1150140111
  11. Guretzk, H. J., K. D. Gerbitz, B. Olgemoller, and E. Schleicher. 1994. Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Aherosclerosis 107, 15-24. https://doi.org/10.1016/0021-9150(94)90137-6
  12. Heinecke, J. W. 1987. Free radical modification of low-density lipoprotein: Mechanisms and biological consequences. Free Rad. Biol. Med. 3, 65-73. https://doi.org/10.1016/0891-5849(87)90040-2
  13. Henriksen, T., E. M. Mahoney, and D. Steinberg. 1981. Enhanced macrophage degradation of biologically modified low density lipoprotein. Atherosclerosis 3, 149-159.
  14. Henriksen, T., E. M. Mahoney, and D. Steinberg. 1981. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoprotein. Proc. Natl. Acad. Sci. USA 78, 6449-6504.
  15. Ide, N., A. B. Nelson, and B. H. S. Lau. 1997. Aged garlic extract and its constituents inhibit $Cu^2+$-induced oxidative modification of low density lipoprotein. Planta Med. 63, 263-264. https://doi.org/10.1055/s-2006-957668
  16. Ide, N. and B. H. S. Lau. 1997. Garlic compounds protect vascular endothelial cells from oxidized low density lipoprotein-induced injury. J. Pharm. Pharmacol. 49, 908-911. https://doi.org/10.1111/j.2042-7158.1997.tb06134.x
  17. Parthasarathy, S., U. P. Steinbrecher, J. Barnett, J. L. Witzum, and D. Steinberg. 1985. Essential role of phospholipase $A_2$ activity in endothelial cell-induced modification of low-density lipoprotein. Proc. Natl. Acad. Sci. USA 82, 3000-3004. https://doi.org/10.1073/pnas.82.9.3000
  18. Kuzuya, M. and F. Kuzuya. 1993. Probucol as an antioxidant and antiatherogenic drug. Free Radic. Biol. Med. 14, 67-77. https://doi.org/10.1016/0891-5849(93)90510-2
  19. Kuzuya, M., M. Naito, C. Funaki, T. Hayashi, K. Asai, and F. Kuzuya. 1989. Protective role of intracellular glutathione against oxidized low density lipoprotein in cultured endothelial cells. Biochem. Biophys. Res. Commun. 163, 1466-1472. https://doi.org/10.1016/0006-291X(89)91144-3
  20. Kuzuya, M., M. Naito, C. Funaki, T. Hayashi, K. Asai, and F. Kuzuya. 1991. Lipid peroxide and transition metals are reqired for the toxicity of oxidized low density lipoprotein to cultured endothelial cells. Biochim. Biophys. Acta. 1096, 155-161. https://doi.org/10.1016/0925-4439(91)90054-D
  21. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  22. Lawson, L. D. 1993. Bioactive organosulfur compounds of garlic and garlic products: Their role in reducing blood lipids. In human medicinal agents from plants. In Kinghorn, A. D. and M. F. Balandrin (eds.), pp. 306-330, American Chemical Society. Washington, DC, USA.
  23. Lawson, L. D. 1996. The composition and chemistry of garlic cloves and processed garlic, in garlic: The science and therapeutic application of allium sativum L. and related species. 2nd eds. In Koch, H. P. and L. D. Lawson (eds.), pp. 37-107, Williams and Wilkins, Baltimore.
  24. Okamoto, G., F. Hayase, and H. Kato. 1992. Scavenging of active oxygen species by glycated protein. Biosci. Biotech. Biochem. 56, 928-931. https://doi.org/10.1271/bbb.56.928
  25. Ryu, B. H., J. W. Jeung, L. G. Robert, and P. Greenspan. 1990. Antioxidative activity for human low density lipoprotein oxidation by a novel compound purified from marine microbial origin. J. Marine Biotech. 81, 175-182.
  26. Sedlak, J. and R. H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem. 25, 192-205. https://doi.org/10.1016/0003-2697(68)90092-4
  27. Sen, C. K. and L. Packer. 1996. Antioxidant and redox regulation of gene transcription. FASEB 10, 709-720.
  28. Steinberg, D., S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum. 1989. Beyond cholesterol: Modification of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915-924 https://doi.org/10.1056/NEJM198904063201407
  29. Wan, C. P., E. Myung, and B. H. S. Lau. 1993. An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes. J. Immunol. 159, 131-138.
  30. Xu, S. and B. H. Simon Cho. 1999. Allyl mercaptan, a major metabolite of garlic compounds, reduces cellular cholesterol synthesis and its secretion in Hep-G2 cells. J. Nutr. Biochem. 10, 654-659. https://doi.org/10.1016/S0955-2863(99)00056-X
  31. Yang, S. T. 2007. Antioxidative activity of extracts of aged black garlic on oxidation of human low density lipoprotein J. Life Sci. 17. 1330-1335. https://doi.org/10.5352/JLS.2007.17.10.1330
  32. Yamasaki, T., L. Li, and B. H. S. Lau. 1994. Garlic compounds protect vascular endothelial cells from hydrogen peroxide-induced oxidant injury. Phytother. Res. 8, 408-412. https://doi.org/10.1002/ptr.2650080706