DOI QR코드

DOI QR Code

Protective Effect of White-Skinned Sweet Potato (Ipomoea batatas L.) from Indonesia on Streptozotocin-Induced Oxidative Stress in Rats

흰 쥐에서 streptozotocin으로 유발된 산화적 스트레스에 대한 인도네시아산 white-skinned sweet potato (WSSP, Ipomoea batatas L.)의 보호효과

  • Bachri, Moch. Saiful (Faculty of Pharmacy, Ahmad Dahlan University) ;
  • Jang, Hye-Won (Division of Endocrinology & Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Choi, Jong-Won (College of Pharmacy, Kyungsung University) ;
  • Park, Jong-Ok (Department of Chemistry, Kyungsung University)
  • ;
  • 장혜원 (성균관대학교 의과대학 삼성서울병원 내분비내과) ;
  • 최종원 (경성대학교 약학대학 약학과) ;
  • 박종옥 (경성대학교 화학과)
  • Received : 2010.02.16
  • Accepted : 2010.11.12
  • Published : 2010.11.30

Abstract

Sweet potato (Ipomoea batatas L.) is widely used in Indonesia and other countries as a traditional medicine for the treatment of diabetes mellitus (DM). The MeOH extract of white skinned sweet potatoes (WSSP) was administered orally in doses of 100 and 200 mg/kg body weight in streptozotocin (STZ)-induced diabetic rats. Experimental diabetes was induced by a single dose of STZ (45 mg/kg, i.p.) injection. Oxidative stress was measured by tissue lipid peroxide (LPO) levels, serum aspartate transaminase (AST), alanine transaminase (ALT), total triglyceride (TG), total cholesterol (TC) and by antioxidative enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase in the liver. An increase in blood glucose, LPO level, AST, ALT, TG and TC levels was observed in the STZ-induced diabetic rats. Administration of MeOH extract of WSSP at a dose of 200 mg/kg for two weeks caused a significant reduction in blood glucose, LPO levels, AST, ALT, TG and TC levels in the STZ-induced diabetic rats. Furthermore, oral administration of MeOH extract showed significant improvement in the activities of antioxidant enzymes (SOD, GPx, and CAT) compared to STZ-induced diabetic rats. In conclusion, the obtained results clearly indicate the role of oxidative stress in the induction of diabetes, and that the protective effects of MeOH extracts of WSSP could be used to benefit diabetic patients.

White-skinned sweet potato (WSSP, Ipomoea batatas L.)는 인도네시아 및 다른 나라 등에서 전통약제로 당뇨병 치료에 널리 사용되고 있다. 본 실험에서는 흰 쥐를 streptozotocin (45 mg/kg체중, i.p.)으로 당뇨병을 유발시킨 후 WSSP의 메탄올 추출물을 체중 1 kg당 Dose 100; 200 mg/kg을 경구로 투여하였다. 산화적 스트레스에 대한 보호효과를 평가하였고 그 효능을 인슐린 분비촉진제인 glimepiride (50 mg/kg 체중)와 비교해 보았다. 산화적 스트레스 평가는 WSP 메탄올 추출물과 glimepiride를 2주 투여 한 후 간장조직의 지질 과산화물(LPO)함량, 혈청 AST, ALT, total triglyceride (TG), total cholesterol (TC), 그리고 항산화효소들인 superoxide dismutase (SOD), 카탈라아제(CAT), 글루타치온 과산화물 분해효소(GPx), 글루타치온 S-전이효소(GST)활성도 등을 간장에서 측정하여 시행하였다. 당뇨 흰쥐에서 혈당, LPO 함량, AST, ALT, TG, TC 함량 등은 정상군에 비하여 그 값이 증가하였고, SOD, CAT, GPx, GST 활성도 값은 감소하였다. 당뇨 흰쥐에 WSSP 메탄올 추출물(200 mg/kg)을 2주일 동안 투여한 결과 의미있는 혈당 감소를 볼 수 있었고, LPO, TG, TC, AST, ALT 함량에서도 개선효과를 볼 수 있었다. 또한 SOD, GPx, 그리고 CAT등 항산화효소들의 활성도 증가도 나타났다. 따라서 WSSP 메탄올 추출물은 당뇨쥐의 혈당을 낮추어 산화적 스트레스를 약화시키고 당뇨로 유발된 손상을 보호해 주는 효과가 있다는 결과를 얻었다.

Keywords

References

  1. Aebi, H. 1974. Catalase, pp. 673-684, In Bergmeyer, H. U.(ed.), Method of Enzymatic Analysis. 2, Academic press, New York.
  2. Attele, A. S., Y. P. Zhou, J. T. Xie, J. A. Wu, L. Zhang, L. Dey, W. Pugh, P. A. Rue, K. S. Polonsky, and C. S. Yuan. 2002. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51, 1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  3. Baynes, J. W. and S. R. Thorpe. 1997. The role of oxidative stress in diabetic complications. Curr. Opin. Endocrinol. 3, 277-284.
  4. Baynes, J. W. 1991. Role of oxidative stress in the development of complications in diabetes. Diabetes 40, 405-412. https://doi.org/10.2337/diabetes.40.4.405
  5. Bernhard, L., W. Werner, P. Rudolf, K. W. Alexandra, and P. Giovanni. 2003. Mode of action of Ipomoea Batatas (Caiapo) in type 2 diabetic patients. Metabolism Clinical and Experimental 52, 875-880. https://doi.org/10.1016/S0026-0495(03)00073-8
  6. Chaudhry, J., N. N. Ghoxh, K. Roy, and R. Chandra. 2007. Antihyperglycemic effect of a new thiazolidine analogue and its role in ameliorating oxidative stress in alloxan-induced diabetic rats. Life Sci. 80, 1135-1142. https://doi.org/10.1016/j.lfs.2006.12.004
  7. Craik, F. I. M. and T. A. Salthouse. 1992. Handbook of Ageing and Cognition, pp. 51-110, Hillsdale, New Jersey.
  8. FAO, 2006. http://www.fao.org, cited: 15/10/2006.
  9. Garber, A. J. 2002. Attenuating CV risk factors in patients with diabetes: clinical evidence to clinical practice. Diabetes, Obesity and Metabolism 4, S5-S12. https://doi.org/10.1046/j.1462-8902.2001.00038.x
  10. Goodman, L. S. and A. Gilman. 1985. The Pharmacological basis of therapeutics. pp. 1490-1510, 7th eds., Macmillan, New York.
  11. Grover, J. K., S. Yadav, and V. Vats. 2002. Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology 81, 1-100. https://doi.org/10.1016/S0378-8741(02)00049-1
  12. Habig, W., M. J. Pabst, and W. B. Jakoby. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
  13. Hauggard, N. 1968. Cellular mechanism of oxygen toxicity. Physiol. Rev. 48, 311-373.
  14. Hiramatsu, K. and S. Aomori. 1988. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 37, 832-837. https://doi.org/10.2337/diabetes.37.6.832
  15. Huang, G. J., H. Y. Chang, H. J. Chen, T. L. Lu, Y. S. Chang, M. J. Sheu, and Y. H. Lin. 2008. Effects of trypsin inhibitor on plasma antioxidant activity and lipid levels in mice from sweet potato roots. J. Sci. Food Agric. 88, 2556-2562. https://doi.org/10.1002/jsfa.3390
  16. Huang, Y. C., Y. H. Chang, and Y. Y. Shao. 2005. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chemistry 98, 529-538.
  17. Kakkar, R., J. Karla, S. V. Manth, and K. Parsad. 1995. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell Biochem. 151, 113-119. https://doi.org/10.1007/BF01322333
  18. Kano, M., T. Takayanagi, K. Harada, K. Makino, and F. Ishikawa. 2005. Antioxidant activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Biosci. Biotechnol. Biochem. 69, 979-988. https://doi.org/10.1271/bbb.69.979
  19. Laakso, M. 2001. Insulin resistance and its impact on the approach to therapy of type 2 diabetes. Int. J. Clin. Pract. Supplemen 8-12.
  20. Marklund, S. and G. Marklund. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  21. McGowan, M. W., J. D. Artiss, and D. R. Stradbergh. 1983. A peroxidase coupled method for the colorimetric determination of serum triglycerides. Clin. Chem. 29, 583.
  22. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  23. Oki, T., M. Masuda, S. Furuta, Y. Nishiba, N. Terahara, and I. Suda. 2002. Involvement of anthocyanins and other phenolic compounds in radical scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 67, 1752-1756. https://doi.org/10.1111/j.1365-2621.2002.tb08718.x
  24. Paglia, E. D. and W. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158-169.
  25. Randle, P. J., P. B. Gailand, C. N. Hales, and E. A. Neiosholine. 1963. The glucose and fatty acid cycle: its role in insulin sensitivity and metabolic disturbance of diabetes. The Lancet 1, 785-790.
  26. Reitman, S. and S. Frankel. 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28, 56-63.
  27. Rhoad, G. G., C. L. Gulbrandse, and A. Kagen. 1976. Serum lipoprotein and coronary artery disease in a population study of Hawaiian Japanese men. New England J. Medicine 294, 293-298. https://doi.org/10.1056/NEJM197602052940601
  28. Richmond, W. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum by continuous flow analysis. Clin. Chem. 22, 1579.
  29. Robertson, R. P., J. Harmon, P. P. Tran, Y. Tanaka, and H. Takahashi. 2003. Glucose toxicity in ${\beta}$-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581-587. https://doi.org/10.2337/diabetes.52.3.581
  30. Rully, M. 1988. Pengaruh infus batang ubi jalar (Ipomoea batatas Poir) sebagai antidiabetik pada binatang percobaan tikus. JF FMIPA UNHAS 109.
  31. Ruzaid, A., I. Amin, A. G. Nawalyah, M. Hamid, and H. A. Faizul. 2005. The effect of Malaysian cocoa extract on glucose levels and lipid profiles in diabetic rats. J. Ethnopharmacol. 98, 55-60. https://doi.org/10.1016/j.jep.2004.12.018
  32. Shuichi, K., A. Hiroyuki, and T. Hirohide. 2001. Isolation of antidiabetic components from white-skinned sweet potato (Ipomoea batatas L.). Biosci. Biotechnol. Biochem. 65, 109-114. https://doi.org/10.1271/bbb.65.109
  33. Singh, N., V. Kamath, and P. S. Rajini. 2005. Attenuation of hyperglycemia and associated biochemical parameters in STZ-induced diabetic rats by dietary supplementation of potato peel powder. Clin. Chim. Acta. 353, 165-175. https://doi.org/10.1016/j.cccn.2004.10.016
  34. Stefek, M., N. Tribulova, A. Gajdoski, and A. Gajdosikova. 2002. The pyridoindole antioxidant stobadine attenuates histochemical changes in kidney of STZ-induced diabetic rats. Acta Histochem. 104, 413-417. https://doi.org/10.1078/0065-1281-00681
  35. Szkudelski, T. 2001. The mechanism of alloxan and streptozotocin action in ${\beta}$-cells of the rat pancreas. Physiol. Res. 50, 537-546.
  36. Tarique, A., M. Sharma, K. K. Pillai, S. E. Haquea, M. M. Alam, and M. S. Zaman. 2007. Protective effect of bezafibrate on streptozotocin-induced oxidative stress and toxicity in rats. Toxicology 229, 165-172. https://doi.org/10.1016/j.tox.2006.10.016
  37. Taskinen, M. R. 1993. Lipoprotein and apoproteins in diabetes. pp. 122-134, In Belfiore, F., R. N. Bergnan, and G. M. Molinatt (eds.), Current Topics in Diabetes Research 12. Informa Health Care.
  38. Temme, E. H., H. P. G. Van, E. G. Schouten, and H. Kesteloot. 2002. Effect of a plant sterol-enriched spread on serum lipids and lipoprotein in mildly hypercholesterolaemic subjects. Acta Cardiology 57, 111-115. https://doi.org/10.2143/AC.57.2.2005382
  39. Teow, C. C., V. D. Truong, R. F. McFeeters, R. L. Thompson, K. V. Pecota, and G. C. Yencho. 2007. Antioxidant activities, phenolic and ${\beta}$-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry 103, 829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  40. Toshiro, M., E. Sumi, K. Mio, F. Keiichi, S. Koichi, T. Norihiko, and M. Kiyoshi. 2002. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas Cultivar Ayamurasaki can be achieved through the ${\alpha}$-glucosidase inhibitory action. J. Agric. Food Chem. 5, 7244-7248.
  41. Uchida, T., R. Tsuchiya, N. Harada, T. Tsunoda, T. Yamaguchi, T. Eto, and M. Furukawa. 1988. Ischemic changes in the pancreas of Watanabe heritable hyper-lipidemic (WHHL) rabbits. Int. J. Pancreato. 3, 261-271.
  42. Ugochukwu, N. H., N. D. Bagayoko, and M. E. Antwi. 2004. The effects of dietary caloric restriction on antioxidant status and lipid peroxidation in mild and severe streptozotocin-induced diabetic rats. Clin. Chim. Acta. 348, 121-129. https://doi.org/10.1016/j.cccn.2004.05.005
  43. Wolff, S. P., Z. Y. Jang, and V. J. Hunt. 1991. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 10, 339-352. https://doi.org/10.1016/0891-5849(91)90040-A
  44. Yamagishi, N., K. Nakayama, T. Wakatsuki, and T. Hatayama. 2001. Characteristic changes of stress protein expression in streptozotocin induced diabetic rats. Life Sci. 9, 2603-2609.
  45. Zhang, Z. F., S. H. Fan, Y. L. Zheng, J. Lu, D. M. Wu, Q. Shan, and B. Hu. 2009. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D-galactose in mouse liver. Food and Toxicology 47, 496-501. https://doi.org/10.1016/j.fct.2008.12.005