DOI QR코드

DOI QR Code

Copper 함량에 따른 Mo-Cu-N 박막의 미세구조 변화에 대한 연구

Effect of Copper Content on the Microstructural Properties of Mo-Cu-N Films

  • 신정호 (부산대학교 재료공학부) ;
  • 최광수 (부산대학교 재료공학부) ;
  • 왕계민 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 김광호 (부산대학교 재료공학부)
  • Shin, Jung-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Choi, Kwang-Soo (School of Materials Science and Engineering, Pusan National University) ;
  • Wang, Qi-Min (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Kim, Kwang-Ho (School of Materials Science and Engineering, Pusan National University)
  • 투고 : 2010.11.04
  • 심사 : 2010.12.30
  • 발행 : 2010.12.31

초록

Ternary Mo-Cu-N films were deposited on Si wafer substrates with various copper contents by magnetron sputtering method using Mo target and Cu target in $Ar/N_2$ gaseous atmosphere. As increasing $N_2$ pressure, the microstructure of Mo-N films changed from ${\gamma}-Mo_2N$ of (111) having face-centered-cubic (FCC) structure to $\delta$-MoN of (200) having hexagonal structure. Detailed the microstructures of the Mo-Cu-N coatings were studied by X-ray diffraction, scanning electron microscopy and field emission transmission electron microscope. The results indicated that the incorporation of copper into the growing Mo-N coating led to the $Mo_2N$ and MoN crystallites were more well-distributed and refined and the copper existed in grain boundary. Ternary Mo-Cu-N films had a composite microstructure of the nanosized crystal crystalline ${\gamma}-Mo_2N$ and $\delta$-MoN surrounded by amorphous $Cu_3N$ phase.

키워드

참고문헌

  1. K. H. Kim, D. S. Han, S. K. Kim, Surf. Coat. Technol., 163-164 (2003) 605. https://doi.org/10.1016/S0257-8972(02)00653-9
  2. S. Boelens, H. Veltrop, Surf. Coat. Technol., 33 (1987) 63. https://doi.org/10.1016/0257-8972(87)90177-0
  3. P. Hones, R. Sanjines, F. Levy, Thin Solid Films, 332 (1998) 240. https://doi.org/10.1016/S0040-6090(98)00992-4
  4. K. H. Lee, C. H. Park, T. S. Yoon, J. J. Lee, Thin Solid Films, 385 (2001) 167. https://doi.org/10.1016/S0040-6090(00)01911-8
  5. M. K. Kazmanli, M. Urgen, A. F. Cakir, Surf. Coat. Technol., 167 (2003) 77. https://doi.org/10.1016/S0257-8972(02)00866-6
  6. T. Suszko,W. Gulbi ski, J. Jagielski, Surf. Coat. Technol., 194 (2005) 319.
  7. S. F. Murray, S. J. Calabrese, Lubr. Eng., 49 (1992) 955.
  8. I.-W. Lyo, H.-S. Ahn, D.-S. Lim, Surf. Coat. Technol., 163-164 (2003) 413. https://doi.org/10.1016/S0257-8972(02)00613-8
  9. J. Suna, J. Musil, P. Dohnal, Vacuum, 80 (2006) 588. https://doi.org/10.1016/j.vacuum.2005.10.003
  10. S. J. Heo, K. H. Kim, M. C. Kang, J. H. Suh, C. G. Park, Surf. Coat. Technol., 201 (2006) 4180. https://doi.org/10.1016/j.surfcoat.2006.08.048
  11. H. S. Myung, H. M. Lee, L. R. Shaginyanb, J. G. Han, Surf Coat Technol., 163-164 (2003) 591. https://doi.org/10.1016/S0257-8972(02)00627-8
  12. T. Arcos, P. Oelhafen, U. Aebi, A. Hefti, M. Duggelin, D. Mathys, R. Guggenheim, Vacuum, 67 (2002) 463. https://doi.org/10.1016/S0042-207X(02)00232-4
  13. M. A. Baker, P. J. Kench, M. C. Joseph, C. Tsotsos, A. Leyland, A. Matthews, Surf Coat Technol., 162 (2003) 222. https://doi.org/10.1016/S0257-8972(02)00571-6
  14. C. P. Mulligan, T. A. Blanchet, D. Surf Coat Technol., 204 (2010) 1388. https://doi.org/10.1016/j.surfcoat.2009.09.018
  15. J. Musil, P. Zeman, H. Hruby, P. H. Mayrhofer, Surf Coat Technol., 120-121 (1999) 179. https://doi.org/10.1016/S0257-8972(99)00482-X
  16. P. Zeman, R. Cerstv , P. H. Mayrhofer, C. Mitterer, J. Musil, Mater. Sci. Eng. A., 289 (2000) 189. https://doi.org/10.1016/S0921-5093(00)00917-5
  17. X. Sun, J. S. Reid, E. Lolawa, M. A. Nicolet, J. Appl. Phys., 81(2) (1997) 656. https://doi.org/10.1063/1.364133
  18. S. Veprek, Surf. Coat. Technol., 97 (1997) 15. https://doi.org/10.1016/S0257-8972(97)00279-X
  19. K. H. Kim, S. R. Choi, S. Y. Yoon, Surf. Coat. Technol., 298 (2002) 243.
  20. A. Ozturk, K. V. Ezirmik, K. Kazmanl , M. Urgen, O. L. Ery lmaz, A. Erdemir, Tribol. Int., 41 (2008) 49. https://doi.org/10.1016/j.triboint.2007.04.008
  21. A. Erdemir, Tribol. Lett., 8 (2000) 97. https://doi.org/10.1023/A:1019183101329
  22. JCPDS, X-ray Index Cards, 25-1366.
  23. S. Y. Yoon, S. R. Choi, M. H. Lee, K. H. Kim, J. Kor. Inst. Surf. Eng., 36 (2003) 122.
  24. C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, J. R. Rumble. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5.
  25. G. Soto, J. A. Daz, W. de la Cruz, Mater. Lett., 57 (2003) 4130.
  26. C. Gallardo-Vega, W. de la Cruz, Appl. Surf. Sci., 252 (2006) 8001. https://doi.org/10.1016/j.apsusc.2005.10.007
  27. J. W. Lee, Y. C. Kuo, Y. C. Chang, Surf Coat Technol., 201 (2006) 4078. https://doi.org/10.1016/j.surfcoat.2006.08.092
  28. P. Zeman, R. Cerstv , P. H. Mayrhofer, C. Mitterer, J. Musil. Mater. Sci. Eng. A. 289 (2000) 189. https://doi.org/10.1016/S0921-5093(00)00917-5