DOI QR코드

DOI QR Code

Anti-staphylococcal Bacteriocin from Enterococcus faecium

  • Kim, Kyung-Suk (Division of Food and Biotechnology, Chungju National University) ;
  • Lee, Ung-Soo (Division of Food and Biotechnology, Chungju National University) ;
  • Moon, Gi-Seong (Division of Food and Biotechnology, Chungju National University)
  • Published : 2010.03.31

Abstract

Antibiotic-resistant Staphylococcus aureus is beginning to pose a social issue. Thus, there is an urgent need for the development of effective anti-staphylococcal agents to eradicate antibiotic-resistant S. aureus in food systems and to treat the pathogen in clinical areas. To address this need, lactic acid bacteria (LAB) from kimchi were screened for the production of anti-staphylococcal bacteriocin. From this screening, a bacteriocin generated by the MK3 strain, which was identified by 16S rRNA gene sequence analysis as Enterococcus faecium, demonstrated antimicrobial activity against an S. aureus strain, and was designated enterocin MK3. Enterocin MK3 also demonstrated activity against other gram-positive bacteria, including several LAB and Listeria monocytogenes, but not gram-negative Escherichia coli. The molecular mass of enterocin MK3 was estimated as approximately 6.5 kDa on an SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) gel.

Keywords

References

  1. O'Brien M, Hunt K, McSweeney S, Jordan K. 2009. Occurrence of foodborne pathogens in Irish farmhouse cheese. Food Microbiol 26: 910-914. https://doi.org/10.1016/j.fm.2009.06.009
  2. Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
  3. Sakwinska O, Kuhn G, Balmelli C, Francioli P, Giddey M, Perreten V, Riesen A, Zysset F, Blanc DS, Moreillon P. 2009. Genetic diversity and ecological success of Staphylococcus aureus strains colonizing humans. Appl Environ Microbiol 75: 175-183. https://doi.org/10.1128/AEM.01860-08
  4. Sit CS, Vederas JC. 2008. Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochem Cell Biol 86: 116-123. https://doi.org/10.1139/O07-153
  5. Galvez A, Abriouel H, Lopez RL, Ben Omar N. 2007. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120: 51-70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  6. Nes IF, Diep DB, Holo H. 2007. Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 189: 1189-1198. https://doi.org/10.1128/JB.01254-06
  7. Gillor O, Ghazaryan L. 2007. Recent advances in bacteriocin application as antimicrobials. Recent Pat Antiinfect Drug Discov 2: 115-122. https://doi.org/10.2174/157489107780832613
  8. Sang Y, Blecha F. 2008. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9: 227-235. https://doi.org/10.1017/S1466252308001497
  9. Piper C, Cotter PD, Ross RP, Hill C. 2009. Discovery of medically significant lantibiotics. Curr Drug Discov Technol 6: 1-18. https://doi.org/10.2174/157016309787581075
  10. Ray B, Daeschel M. 1992. Food biopreservatives of microbial origin. CRC Press, Boca Raton, Florida, USA. p 64-70.
  11. Moon GS, Jeong JJ, Ji GE, Kim JS, Kim JH. 2000. Characterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J Microbiol Biotechnol 10: 507-513.
  12. Moon GS, Pyun YR, Kim WJ. 2006. Expression and purification of a fusion-typed pediocin PA-1 in Escherichia coli and recovery of biologically active pediocin PA-1. Int J Food Microbiol 108: 136-140. https://doi.org/10.1016/j.ijfoodmicro.2005.10.019
  13. Moon GS, Pyun YR, Kim WJ. 2005. Characterization of the pediocin operon of Pediococcus acidilactici K10 and expression of His-tagged recombinant pediocin PA-1 in Escherichia coli. J Microbiol Biotechnol 15: 403-411.
  14. Shin MS, Han SK, Choi JH, Ji AR, Kim KS, Lee WK. 2009. Characterization of antimicrobial substance produced by Lactobacillus sp. HN 235 isolated from pig intestine. Kor J Microbiol Biotechnol 37: 125-132.
  15. Izquierdo E, Wagner C, Marchioni E, Aoude-Werner D, Ennahar S. 2009. Enterocin 96, a novel class Ⅱ bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Appl Environ Microbiol 75: 4273-4276. https://doi.org/10.1128/AEM.02772-08
  16. Maqueda M, Galvez A, Bueno MM, Sanchez-Barrena MJ, Gonzalez C, Albert A, Rico M, Valdivia E. 2004. Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr Protien Pept Sci 5: 399-416. https://doi.org/10.2174/1389203043379567
  17. Oscariz JC, Pisabarro AG. 2001. Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. Int Microbiol 4: 13-19.
  18. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H. 2006. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70: 564-582. https://doi.org/10.1128/MMBR.00016-05
  19. O'Sullivan DJ, Klaenhammer TR. 1993. Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59: 2730-2733.
  20. Klare I, Konstabel C, Badstübner D, Werner G, Witte W. 2003. Occurrence and spread of antibiotic resistance in Enterococcus faecium. Int J Food Microbiol 88: 269-290. https://doi.org/10.1016/S0168-1605(03)00190-9