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REMARKS ON THE GAP SET OF R = K + C

Nesrin Tutaş

Abstract. G̃(P, Q), a new generalization of the set of gap numbers of a
pair of points, was described in [1]. Here we study gap numbers of local
subring R = K + C of algebraic function field over a finite field and we
give a formula for the number of elements of G̃(P, Q) depending on pure
gaps and R.

1. Introduction

The concept of Weierstrass point is a well known notion, and it has many
generalizations and applications. One of them, generalization to the semilocal
subring of an algebraic function field, was given by Karakaş [6]. This allows
a function field F may have subrings with Weierstrass points even if genus
g ∈ {0, 1}. Now, we give a brief review of the theory.

Let F be an algebraic function field over a finite field K, and F ′
= K′F be

a constant field extension of F/K. Let R be a semilocal subring of F with K
⊂ R ⊆ F and let the quotient field of R be F . Our notations will be as follows:

PF : the set of prime divisors (or points) of F/K.
OP , vP : for any P ∈ PF , the valuation ring of P , and valuation at P .
(x): divisor of x ∈ F ; (w): divisor of w Weil differential.
S(R) : the set of prime divisors whose valuation rings contain R.
It is known that |S(R)| < ∞. If R 6= F , then S(R) 6= ∅.
PR := PF \ S(R).
DF (resp., DR): the free abelian group generated by PF (resp., PR).
If R

′
:= K′R, then R

′
is a semilocal subring of F ′

with

S(R
′
) = {P ′ ∈ PF ′ : P

′ |P for some P ∈ S(R)}.
For any D ∈ DF , we define L(D) = {x ∈ F : (x) ≥ −D} ∪ {0} and

L(D) = L(D)∩R. It is well known that dimK L(D), dimK L(D), δ = dimKR/R
and γ = dimKR/C are finite, where R is the integral closure of R in F and
C is the conductor of R in R. For P ∈ S(R), there is uniquely determined
non-negative integer cP such that C = {y ∈ F : vP (y) ≥ cP , P ∈ S(R)}. The
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divisor
∑

P∈S(R) cP P is also denoted by C, and deg C = γ. For any D ∈ DR,
Riemann-Roch-Rosenlicht’s theorem can be formulated as

dimK L(D) = deg D + 1− gR + dimK L̃(D),

where gR = g + δ, and g is the genus of F . It can be shown that δ ≤ γ ≤ 2δ.
γ = 2δ if and only if, for any D ∈ DR and ω Weil differential such that (ω)+C ∈
DR, dimK L̃(D) = dimK L((ω) + C − D). As a result of this formulation, we
immediately see that dimK L((ω) + C −D) = 0 if deg D ≥ 2g + γ − 1. For any
P ∈ PR of degree one, we have dimK L((2g+γ−1)P ) = g+γ−δ and therefore
there are gR positive integers λ ≤ 2g + γ − 1 for which dimK L(λP ) = dimK
L((λ− 1)P ). We call these integers gap numbers (otherwise, pole numbers) of
R at P . We call P a Weierstrass point of R, if the number of points of R
having the same gap numbers as P is finite. Otherwise, P is called an ordinary
point of R. If R = F , then we have classical Weierstrass points theory. During
the last decades the set of pole numbers H(P ), called Weierstrass semigroup,
is also generalized to the r-tuple semigroup H(P1, . . . , Pr), see [3], [4], [7]. Its
many applications take place in the coding theory, for example in [8] and [9].

For any r-tuple P1, . . . , Pr of distinct rational points we denote by RP1,...,Pr

the ring of functions that are regular outside the points P1, . . . , Pr. Throughout
this paper, we will assume that #K > r. For notational simplicity we define
vP1,...,Pr (f) := (vP1(f), . . . , vPr (f)) for any non-zero function f . In [1], authors
gave a new generalization of the concept r-tuple Weierstrass semigroup

H̃(P1, . . . , Pr) := Ĥ(P1, . . . , Pr)/vP1,...,Pr (R
∗
P1,...,Pr

),

and the complement of H̃(P1, . . . , Pr) is called the set of gaps, and denoted by
G̃(P1, . . . , Pr). For Ĥ(P1, . . . , Pr) and Ĝ(P1, . . . , Pr) see [1]. #G̃(P1, . . . , Pr) <
∞ and their properties were investigated extensively in [1]. Now, we specialize
to the case r = 2. Let P and Q be two rational points of F . There exists
a positive integer m, called the period of the semigroup H̃(P,Q), such that
{λ · (m,−m) | 0 ≤ λ ≤ 1} is a fundamental region. We have

∑m+c−1
i=c (i +

σP,Q(i)) = mg, where c ∈ Z and σP,Q is the map whose definition and basic
properties can be found in [1]. In particular, we are able to calculate the number
of gaps of the H̃(P,Q) in terms of σP,Q. By Theorem 18 in [1], for any integer
c, we have

#G̃(P, Q) = mg +
m+c−1∑

i=c

#{j > i |σP,Q(j) > σP,Q(i)}.

In this work we study gap set of the subrings of the form R = K+ C, where
C is the conductor of R, and give a formula for the number of G̃(P, Q) via
the set of pure gap numbers G̃0(P,Q) and gap numbers of R. Additionally, it
contains some examples illustrating our theorems.
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2. Gap numbers of local subring R = K + C

Definition 1. Let F be an algebraic function field over K and P1, P2, . . . , Pr

be rational points of F . We define σj : Zr−1 → Z by

σj(i1, . . . , ij−1, ij+1, . . . , ir)

:= min{k | (i1, . . . , ij−1, k, ij+1, . . . , ir) ∈ Ĥ(P1, P2, . . . , Pr)}.
If r = 2, then the map σ2 will be the map σP,Q, introduced in [1]. Now we

study gap set of R.

Lemma 2. If D is any integral divisor of the ring R = K + C, then

L(D) = K + L(D − C).

Proof. One can easily prove this lemma. ¤

Here note that the set of gap numbers of Rn = K+Qn at P will be denoted
by Gn(P ).

Lemma 3. (1) Let Rn = K + Qn be a local subring of F , where Q ∈ PF of
degree one, n ≥ 2 and P ∈ PF with P 6= Q. Then we have

(a) If j is a gap number of Rn at P, then (j,−n) ∈ Ĝ(P,Q).
(b) If j ∈ G(P ), then j ∈ Gn(P ).
(c) Let j ∈ H(P ). j ∈ Gn(P ) if and only if σ2(j) > −n.

(2) Let Rn1,n2,...,nr = K + Qn1
1 Qn2

2 · · ·Qnr
r be a local subring of F , where

n1 + · · · + nr ≥ 2, deg Qi = 1, i = 1, 2, . . . , r, and Qi and Qj be distinct
points for i 6= j. If i ∈ H(P ), (i,−n1, . . . ,−nr) ∈ Ĝ(P, Q1, . . . , Qr) such that
σ1(−n1, . . . ,−nr) < i, then L(iP −∑r

t=1 ntQt) = L((i− 1)P −∑r
t=1 ntQt).

Proof. (1) To prove (a), let us assume the opposite. If (j,−n) 6∈ Ĝ(P, Q), then
(j,−n) ∈ Ĥ(P, Q). There exists a function f ∈ RP,Q\{0} such that (j,−n) =
(−vP (f),−vQ(f)). Hence, L(jP−nQ) 6= L((j−1)P−nQ) and j /∈ Gn(P ). (b)
is clear from definitions. (c) Let j ∈ H(P ) and −n ≥ σ2(j). Since (j, σ2(j)) ∈
Ĥ(P, Q), there is a function f ∈ RP,Q\{0} such that vP (f) = −j, vQ(f) =
−σ2(j) ≥ n. Therefore, L(jP −nQ) 6= L((j−1)P −nQ). For converse, assume
that j 6∈ Gn(P ). By Lemma 2, L(jP − nQ) 6= L((j − 1)P − nQ). There exists
a function f such that vP (f) = −j, vQ(f) ≥ n. On the other hand, since
(j, σ2(j)) ∈ Ĥ(P, Q), there exists a function g such that vP (g) = −j, vQ(g) =
−σ2(j) < n. Let take h := f + g, we see that for some t < j, vP (h) = −t,
vQ(h) = −σ2(j). Hence, (t, σ2(j)) ∈ Ĥ(P,Q) and (t, σ2(j)) < (j, σ2(j)), but
this contradicts with the definition of σ2. Assuming opposite of the assertion,
we can prove (2) by similar reasoning. ¤

The following lemma explains action of the constant field extensions to the
semilocal subrings, and it can be proven by using constant field extension prop-
erties, see [12]. Now on, F ′/K′0 will denote the costant field extension of F/K.
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Lemma 4. Let R′ be a semilocal subring of F ′, R′ be denote the integral closure
of R

′
in F ′ and C

′
be denote the conductor of R

′
in R′ . Then the followings

hold.
(a) dimK′ R

′/R
′
= δ, dimK′ R

′/C
′
= γ.

(b) C
′
= ConF ′/F (C).

(c) For any D ∈ DR, we have ConF ′/F (D) ∈ DR′ , deg D=deg ConF ′/F (D),
and dimK′ L(ConF ′/F (D)) = dimK L(D). Thus for any D ∈ DR,

dimK′ L̃(ConF ′/F (D)) = dimK L̃(D).

(d) Let F ′
/F be a constant field extension and R

′
be as defined above. Let

Q
′ ∈ PR′ be an extension of Q ∈ PR of degree one. Then, any gap number

of Q is also a gap number of Q′. In particular if deg Q = 1, then a positive
integer n is a gap number of Q if and only if it is a gap number of Q′.

Theorem 5. Let F be an algebraic function field over a finite field K, #K>2.
Let Rn = K + Qn be a local subring of F and Q ∈ PF , deg Q = 1, n ≥ 2.

(a) If P ∈ PRn
and deg P = 1, then the gap set of Rn at P is given by

G(P ) ∪ {j ∈ H(P ) : σ2(j) > −n}.
(b) If P ∈ PRnand deg P = r, then the gap set of Rn at P is given by

G(P ) ∪ {i ∈ H(P ) : (i, . . . , i,−n) ∈ Ĝ(P1, P2, ...Pr, Q
′), σr+1(i, . . . , i) > −n},

where F ′ = FK′/K′ is a constant field extension of degree r of F/K, and Pk|P ,
Q′|Q, k = 1, 2, 3, . . . , r.

Proof. (a) Let Rn = K + Qn, deg Q = 1, P 6= Q and deg P = 1, n ≥ 2. Now,
C = nQ, and we consider the spaces

L(P −nQ) ⊂ L(2P −nQ) ⊂ · · · ⊂ L(nP −nQ) ⊂ · · · ⊂ L((2g +n−1)P −nQ).

It follows that the first n − 1 gap values of P consist of 1, 2, . . . , n − 1. The
remaining g gap values range between δ + 1 = n and 2g + n− 1. By Lemma 3
and Lemma 2, the gap set of Rn is {1, 2, . . . , n− 1}∪ {i ∈ G(P ) : i ≥ n}∪ {j ∈
H(P ) : σ2(j) > −n}, and this set is also written of the following form

G(P ) ∪ {j ∈ H(P ) : σ2(j) > −n}.
(b) Let P ∈ PRn and deg P = r. P has at most

[
gR

r

]
gap numbers, and for

any gap number j ≤ [
2gR−2

r

]
+ 1. If F ′ = FK′ is a constant field extension of

degree r, then P splits completely in F ′/F . Hence, there are r distinct places
P1, P2, . . . , Pr of degree one lying over the place P . By Lemma 4, R′n = K′+Q′n

is a local subring of F ′ and an extension of Rn, C ′ = nQ′and ConF ′/F (iP ) =∑r
t=1 iPt. We can easily see that i ∈ Gn(P ) if and only if

dimK L(iP )− dimK L((i− 1)P ) = dimK′ L(
r∑

t=1

iPt)− dimK′ L(
r∑

t=1

(i− 1)Pt).
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Moreover, we have L(
∑r

t=1 iPt) = K′ + L(
∑r

t=1 iPt − nQ′) and L(
∑r

t=1 iPt −
nQ′) = L(

∑r
t=1(i − 1)Pt − nQ′). On the other hand, if i ∈ G(P ), then

i ∈ Gn(P ). Now, we take i ∈ H(P ). It is easy to see that i ∈ H(P ) if and
only if (i, i, . . . , i) ∈ H(P1, . . . , Pr), i.e., (i, i, . . . , i, 0) ∈ Ĥ(P1, . . . , Pr, Q

′). If
(i, . . . , i,−n) ∈ Ĝ(P1, . . . , Pr, Q

′) and σr+1(i, . . . , i) > −n, using similar idea
which can be seen in the proof of Lemma 3, we have L(

∑r
t=1 iPt − nQ′) =

L(
∑r

t=1(i− 1)Pt − nQ′). ¤

Corollary 6. (a) #{j ∈ H(P ) : σ2(j) > −n} = n− 1.
(b) If P ∈ PRn

is a rational and Weierstrass point of F , then P is also
Weierstrass point of Rn.

(c) Let Rn = K+ Qn be a local subring of F over a finite field K, deg Q = 1
and n ≥ 2, #K>2. If n > m and j is a gap number of Rm at a point P of
deg P = 1, then j is also gap number of Rn at P .

Proof. Using the fact that the number of gaps of Rn is gR = g + δ = g + n− 1
and Theorem 5, we have (a). We get (b) from the definition of Weierstrass
point and Theorem 5. If n > m and σ2(j) > −m, then σ2(j) > −n. Hence, (c)
is clear by Theorem 5. ¤

Definition 7. Let (a, b) ∈ Ĝ(P,Q). If dim L(aP+bQ) = dim L(aP+(b−1)Q) =
dim L((a− 1)P + bQ), then (a, b) is called a pure gap. The set of pure gaps is
denoted by Ĝ0(P, Q), and the pure gaps set in G̃(P,Q) is denoted by G̃0(P, Q).

Lemma 8. (a, b) ∈ G̃0(P, Q) if and only if (k, b), (a, t) ∈ G̃(P,Q) for all k ≤ a
and t ≤ b.

Proof. Let (a, b) ∈ Ĝ(P, Q). If dim L(aP +bQ) = dim L((a−1)P +bQ)+1, then
there exists j such that j ≤ a, (j, b) ∈ Ĥ(P, Q). In this case (a, b′) ∈ Ĥ(P, Q)
for b′ ≤ b, then (a, b) ∈ Ĥ(P,Q), but this is a contradiction. Similarly, we
obtain dim L(aP +bQ) 6= dim L(aP +(b−1)Q)+1. Hence we have lemma. ¤

Now we denote Γ := {(a, σ2(a)) : 0 ≤ a ≤ 2g + n − 1} and we use natural
partial order defined as

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2, b1 ≤ b2,

and for any pair (a, b) define

Γ(a,b) = {(a′, b′) ∈ Γ : a′ ≤ a, b′ ≤ b}.
Lemma 9. #Γ(a,σ2(a)) = dim L(aP + σ2(a)Q).

Proof. Since (a, σ2(a)) ∈ Ĥ(P, Q), we have dim L((a − 1)P + σ2(a)Q) + 1 =
dim L(aP + σ2(a)Q). Then (j, σ2(a)) ∈ Ĥ(P,Q) for some j ≤ a. Since
(j, σ2(j)) ∈ Ĥ(P, Q), we get σ2(j) < σ2(a). Hence, (j, σ2(j)) ∈ Γ(a,σ2(a))

and we have lemma. ¤
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Now, we can calculate the number of gaps at the fundamental period via
G̃0(P, Q).

Theorem 10. Denote by m the period of the semigroup Ĥ(P, Q). The number
of gaps of the semigroup H̃(P,Q) is given by

#G̃(P, Q) = #G̃0(P,Q) + 2
m+1∑
n=2

dim L̃(σ−1
2 (−n)P ).

Proof. Let take −n = σ2(i) and i ∈ H(P ). In this case we have

dim L(iP + σ2(i)Q) = #{(j, σ2(j)) : (j, σ2(j)) ≤ (i, σ2(i))}
by Lemma 9. It is easy to see that

i−1 = (n−1)+#{j ∈ Gn(P ) : n ≤ j < i}+#{(j, σ2(j)) : (j, σ2(j)) < (i,−n)}
therefore,

i− 1 = (n− 1) + #{j ∈ Gn(P ) : n ≤ j < i}+ dim L(iP + σ2(i)Q)− 1,

and using Riemann-Roch-Rosenlicht theorem, we have

#{j ∈ Gn(P ) : n ≤ j < σ−1
2 (−n)} = g − dim L̃(σ−1

2 (−n)P ),

m+1∑
n=2

#{j ∈ Gn(P ) : n ≤ j < σ−1
2 (−n)} = mg −

m+1∑
n=2

dim L̃(σ−1
2 (−n)P ).

Hence

mg = # Pure Gaps +
m+1∑
n=2

dim L̃(σ−1
2 (−n)P ).

On the other hand,

#{j > σ−1
2 (−n) |σ2(j) > −n)} = g + n− i + dim L(σ−1

2 (−n)P − nQ)− 1

and
m+1∑
n=2

#{j > σ−1
2 (−n) |σ2(j) > −n)} =

m+1∑
n=2

dim L̃(σ−1
2 (−n)P ).

From Theorem 18 in [1], we obtain

#G̃(P, Q) = # Pure Gaps + 2
m+1∑
n=2

dim L̃(σ−1
2 (−n)P ).

¤

Example 1. Let F = K(x,y) be a function field given by y2 = x3 − x, where
K is a finite field, charK = 5. Then (x) = 2P − 2Q. Now we consider the
subring R2 = K+Q2. Since 2 is period for the semigroup Ĥ(P,Q), 1 and 3 are
gap numbers of R2 at P .
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Example 2. Let q be a prime power and m a positive integer (m, q) = 1.
Now, we will investigate the algebraic function field Cm defined over Fq2 by the
equation yq +y = xm. If m = q +1, Cm is the Hermitian function field [2]. Let
P = P00 and Q = P∞, where P∞ denotes the point at infinity and Pab denotes
the common zero of x− a and y − b. The divisors of x and y are given by

(x) =
∑

βq+β=0

P0β − qP∞ and (y) = m(P00 − P∞).

In fact m is the period of the semigroup Ĥ(P, Q). We have σ2(i) = −iq for
−m < i ≤ 0, and σ2(−i ·m) = i ·m, σ2(−1− im) = q + im for any i ∈ Z.

Theorem 11. Let Cm be the algebraic function field over Fq2 given by the
equation yq + y = xm. We denote by P the zero of y and by Q the pole of y.
Let Rn = Fq2 + Qn be a local subring of Cm, where n ≥ 2, and m = q + 1 or
m|q + 1. Then the set of gap numbers of Rn at P is one of the following sets

(i) { aq : 0 < a < n = α} ∪G(P ).
(ii) {1, 2, . . . , n− 1, j + n ; j ∈ Gα(P ), n = mβ + α, 0 ≤ α < m}.

Proof. Now, we give a proof for m = q + 1, the other case can be proven
similarly. Let Rn = Fq2 + Qn be a local subring of Cq+1, n ≥ 2. If j ∈ G(P ),
then j ∈ Gn(P ). If j ∈ H(P ) and j ≤ 2g + n− 1, then j = aq + bm, where a, b
are non-negative integers and σ2(j) = −(a + bm).

case 1. If n = α < m, then σ2(j) = −a < α and j = aq ∈ Gn(P ).
case 2. If n = α + mβ and α < m, then σ−1

2 (−n) = αq + mβ. Using
periodicity, we have (j,−n) = (aq + mb,−(βm + α)) = (aq + m(b− β),−α). If
(aq +m(b−β),−α) ∈ Ĝ(P, Q), then (j,−n) ∈ Ĝ(P, Q) and j ∈ Gn(P ). Hence,
we have Gn(P ) = {1, 2, . . . , n− 1, j + n ; j ∈ Gα(P )}.

case 3. Let n = βm. If j is a gap number of the Cq+1, then j+βm ∈ Gn(P ).
On the other hand, (βm,−βm) is always in Ĥ(P, Q). Hence,

{1, 2, . . . , mβ − 1, j + mβ ; j ∈ G(P )}.
is gap set of Rβm = Fq2 + Qβm at P . ¤

It is well known that any rational point of Hermitian curve is also a Weier-
strass point. By Corollary 6, one sees that if P ∈ PRn is a rational point,
then P is a Weierstrass point of Rn. Now, we consider the curve y4 + y = x5

over the finite field with 16 elements. Let R4 = K + Q4, where Q is the
point at infinity, and let take (w) = (xy2dx), (dx) = 10Q. Consider divisor
WR := (Wx)+ (

∑gR

i=1 εi)(dx)+ gR(w) = ((xy2)9(x16 +x)4)+390Q+9(xy2dx),
where Wx is the Wronskian determinant. Any point P ∈ PR is a Weierstrass
points of R if and only if vP (WR) > 0. Therefore, Weierstrass points of the
local subring R4 = K + Q4 are exactly rational points of the curve different
from Q.

Here we consider subring Rn1,n2 = K + Qn1
1 Qn2

2 , n1 + n2 ≥ 2, deg Qk = 1,
k = 1, 2. For any P ∈ PR of degree one if i ∈ G(P ), then we have i ∈ Gn1,n2(P ).
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Let define the map σ1(−n1,−n2) = min{j : (j,−n1,−n2) ∈ Ĥ(P, Q1, Q2)}. If
i ∈ H(P ) and if there exists a pair (a, b) such that (a, b) > (−n1,−n2) and
σ1(a, b) = i > σ1(−n1,−n2), then i ∈ Gn1,n2 (P ). Thus the gap set of Rn1,n2

is G(P )∪{i ∈ H(P ) : (a, b) > (−n1,−n2), σ1(a, b) = i > σ1(−n1,−n2)}. Now,
we take the Hermitian curve C5 and the local subring R1,1 = Fq2 + Q1Q2 and
points Q1 = P00, Q2 = P0b, where bq + b = 0. Let P = P∞, σ1(−1,−1) = 4,

(4,−1,−1) ∈ Ĥ(P, Q1, Q2). Since 5 ∈ H(P ), we have (5,−1, 0), (5, 0,−1),
(5, 0, 0), (5,−5, 0), (5, 0,−5) ∈ Ĥ(P, Q1, Q2). Hence, 5 is a gap number of
R1,1 at P . Similarly, G1,1(P ) = {1, 2, 3, 5, 6, 7, 11}. For another example, we
take the subring R3,2 = Fq2 + Q3

1Q
2
2. Then σ1(−3,−2) = 12, (12,−3,−2) ∈

Ĥ(P, Q1, Q2), and G3,2(P ) = {1, 2, 3, . . . , 11}.
Corollary 12. The number of pure gaps of Cm in the fundamental region is
given by

(a) #G̃0(P, Q) = 1
3q(q2 − 1), where m = q + 1

(b) #G̃0(P, Q) = 1
6 (m− 1) (2mq − q −m− 1), where m|q + 1.

Proof. It follows from Theorem 10 and the following formulas

#G̃(P, Q) = (m + 1)g +
(

q

3

)
, m = q + 1,

#G̃(P, Q) = (m + 1)g +
1
6
(m− 2)(m− 1)(q − 2), m|q + 1

which are given in [1]. ¤

For an example, the curve y11 + y = x4 has 36 pure gap numbers.

Example 3. The Suzuki curve over the field Fq is defined by the equation
yq − y = xq0(xq − x), where q0 = 2s, q = 22s+1 and s is a positive integer.
We denote by P = P00 the zero of both x and y and by O = P∞ the pole of
x. It is also known that the divisor (q + 2q0 + 1)(P00 − P∞) is principal (see
[9]). Here, m := q + 2q0 + 1 and H(P∞) = 〈q, q + q0, q + 2q0, q + 2q0 + 1〉. One
easily sees that σ2(q) = −1, σ2(q + q0) = −1− q0, σ2(q + 2q0) = −1− 2q0, and
σ2(m) = −m. This determines the involution σ2 completely. For j ∈ H(P )
and j = aq + b(q + q0) + c(q + 2q0) + d(q + 2q0 + 1), then we have σ2(j) =
−(a + b(1 + q0) + c(1 + 2q0) + d(q + 2q0 + 1)). If n < m,

n = (1 + 2q0)α + l, 0 ≤ l < 1 + 2q0, l = β(q0 + 1) + τ, τ < q0 + 1

and we get σ−1
2 (−n) = σ1(−n) = τq + β(q + q0) + α(q + 2q0).

Theorem 13. Let F be the Suzuki function field over Fq and Rn = K + Qn

be a local subring of F , deg Q = 1. Assume that P ∈ PRn of degree one, and
m > n ≥ 2. If j ∈ Gn(P )\G(P ) and n is in the form above, then j can be
written one of the following forms:

(I) (i) τq + b(q + q0) + α(q + 2q0), b ≤ β.
(ii) a + b(q + q0) + α(q + 2q0), b ≤ β, a < q0 + 1.
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(iii) aq + b(q + q0) + α(q + 2q0), b < β, τ < a < q0 + 1.
(II) c < α, α = c + u, where u is an integer,

(i) τ + b(q + q0) + c(q + 2q0), b ≤ β + u
[

uq0
1+q0

]
.

(ii) a + b(q + q0) + c(q + 2q0), a < τ, b ≤ β + u +
[

uq0+τ
1+q0

]
.

(iii) a + b(q + q0) + c(q + 2q0), τ < a, b ≤ β + u
[

uq0
1+q0

]
.

Proof. Let n < m. If j ∈ H(P ), then j = aq + b(q + q0) + c(q + 2q0). Here we
note that a + b(1 + q0) < 1 + 2q0 and if j = km, then j is not a gap number at
P . Using Theorem 5, we have the theorem. ¤

If n = m, we have Gn(P ) = {1, 2, . . . , m− 1, j + m ; j ∈ G(P )}. Generally,
if n = km + l with 0 ≤ l < m, using periodicity we obtain

Gn(P ) = {1, 2, . . . , n− 1, j + n ; j ∈ Gl(P )}.
Lemma 14. For the Suzuki function field defined by yq− y = xq0(xq−x) over
Fq

#G̃0(P, Q) =
1
15

q0

(
5q2

0 − 25q0 − 40q3
0 + 46q6

0 − 6
)
.

Proof. It follows from [1] and Theorem 10. ¤

If q0 = 2, the number of pure gaps is 136 for Suzuki curve.
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