Bull. Korean Math. Soc. **47** (2010), No. 2, pp. 433–442 DOI 10.4134/BKMS.2010.47.2.433

REMARKS ON THE GAP SET OF $R = \mathcal{K} + C$

Nesrin Tutaş

ABSTRACT. $\tilde{G}(P,Q)$, a new generalization of the set of gap numbers of a pair of points, was described in [1]. Here we study gap numbers of local subring $R = \mathcal{K} + C$ of algebraic function field over a finite field and we give a formula for the number of elements of $\tilde{G}(P,Q)$ depending on pure gaps and R.

1. Introduction

The concept of Weierstrass point is a well known notion, and it has many generalizations and applications. One of them, generalization to the semilocal subring of an algebraic function field, was given by Karakaş [6]. This allows a function field \mathcal{F} may have subrings with Weierstrass points even if genus $g \in \{0, 1\}$. Now, we give a brief review of the theory.

Let \mathcal{F} be an algebraic function field over a finite field \mathcal{K} , and $\mathcal{F}' = \mathcal{K}' \mathcal{F}$ be a constant field extension of \mathcal{F}/\mathcal{K} . Let R be a semilocal subring of \mathcal{F} with $\mathcal{K} \subset R \subseteq \mathcal{F}$ and let the quotient field of R be \mathcal{F} . Our notations will be as follows:

 $\mathbf{P}_{\mathcal{F}}$: the set of prime divisors (or points) of \mathcal{F}/\mathcal{K} .

 O_P, v_P : for any $P \in \mathbf{P}_{\mathcal{F}}$, the valuation ring of P, and valuation at P.

(x): divisor of $x \in F$; (w): divisor of w Weil differential.

S(R): the set of prime divisors whose valuation rings contain R.

It is known that $|S(R)| < \infty$. If $R \neq \mathcal{F}$, then $S(R) \neq \emptyset$.

 $\mathbf{P}_R := \mathbf{P}_{\mathcal{F}} \setminus S(R).$

 $\mathbf{D}_{\mathcal{F}}$ (resp., \mathbf{D}_{R}): the free abelian group generated by $\mathbf{P}_{\mathcal{F}}$ (resp., \mathbf{P}_{R}). If $R' := \mathcal{K}' R$, then R' is a semilocal subring of \mathcal{F}' with

 $S(R') = \{P' \in \mathbf{P}_{\mathcal{F}'} : P' | P \text{ for some } P \in S(R)\}.$

For any $D \in \mathbf{D}_{\mathcal{F}}$, we define $L(D) = \{x \in F : (x) \geq -D\} \cup \{0\}$ and $\mathcal{L}(D) = L(D) \cap R$. It is well known that $\dim_{\mathcal{K}} L(D), \dim_{\mathcal{K}} \mathcal{L}(D), \delta = \dim_{\mathcal{K}} \overline{R}/R$ and $\gamma = \dim_{\mathcal{K}} \overline{R}/C$ are finite, where \overline{R} is the integral closure of R in \mathcal{F} and C is the conductor of R in \overline{R} . For $P \in S(R)$, there is uniquely determined non-negative integer c_P such that $C = \{y \in \mathcal{F} : v_P(y) \geq c_P, P \in S(R)\}$. The

O2010 The Korean Mathematical Society

Received November 27, 2008; Revised June 9, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 14H55, 14G50.

Key words and phrases. Weierstrass points, gap numbers.

divisor $\sum_{P \in S(R)} c_P P$ is also denoted by C, and deg $C = \gamma$. For any $D \in \mathbf{D}_R$, Riemann-Roch-Rosenlicht's theorem can be formulated as

$$\dim_{\mathcal{K}} \mathcal{L}(D) = \deg D + 1 - g_R + \dim_{\mathcal{K}} \mathcal{L}(D),$$

where $g_R = g + \delta$, and g is the genus of \mathcal{F} . It can be shown that $\delta \leq \gamma \leq 2\delta$. $\gamma = 2\delta$ if and only if, for any $D \in D_R$ and ω Weil differential such that $(\omega)+C \in D_R$, $\dim_{\mathcal{K}} \widetilde{\mathcal{L}}(D) = \dim_{\mathcal{K}} \mathcal{L}((\omega) + C - D)$. As a result of this formulation, we immediately see that $\dim_{\mathcal{K}} \mathcal{L}((\omega) + C - D) = 0$ if deg $D \geq 2g + \gamma - 1$. For any $P \in P_R$ of degree one, we have $\dim_{\mathcal{K}} \mathcal{L}((2g+\gamma-1)P) = g+\gamma-\delta$ and therefore there are g_R positive integers $\lambda \leq 2g + \gamma - 1$ for which $\dim_{\mathcal{K}} \mathcal{L}(\lambda P) = \dim_{\mathcal{K}} \mathcal{L}((\lambda-1)P)$. We call these integers gap numbers (otherwise, pole numbers) of R at P. We call P a Weierstrass point of R, if the number of points of Rhaving the same gap numbers as P is finite. Otherwise, P is called an ordinary point of R. If $R = \mathcal{F}$, then we have classical Weierstrass points theory. During the last decades the set of pole numbers H(P), called Weierstrass semigroup, is also generalized to the r-tuple semigroup $H(P_1, \ldots, P_r)$, see [3], [4], [7]. Its many applications take place in the coding theory, for example in [8] and [9].

For any r-tuple P_1, \ldots, P_r of distinct rational points we denote by R_{P_1,\ldots,P_r} the ring of functions that are regular outside the points P_1, \ldots, P_r . Throughout this paper, we will assume that $\#\mathcal{K} > r$. For notational simplicity we define $v_{P_1,\ldots,P_r}(f) := (v_{P_1}(f),\ldots,v_{P_r}(f))$ for any non-zero function f. In [1], authors gave a new generalization of the concept r-tuple Weierstrass semigroup

$$H(P_1,...,P_r) := H(P_1,...,P_r)/v_{P_1,...,P_r}(R^*_{P_1,...,P_r}),$$

and the complement of $\tilde{H}(P_1, \ldots, P_r)$ is called the set of gaps, and denoted by $\tilde{G}(P_1, \ldots, P_r)$. For $\hat{H}(P_1, \ldots, P_r)$ and $\hat{G}(P_1, \ldots, P_r)$ see [1]. $\#\tilde{G}(P_1, \ldots, P_r) < \infty$ and their properties were investigated extensively in [1]. Now, we specialize to the case r = 2. Let P and Q be two rational points of \mathcal{F} . There exists a positive integer m, called the *period* of the semigroup $\tilde{H}(P,Q)$, such that $\{\lambda \cdot (m, -m) \mid 0 \leq \lambda \leq 1\}$ is a fundamental region. We have $\sum_{i=c}^{m+c-1} (i + \sigma_{P,Q}(i)) = mg$, where $c \in \mathbb{Z}$ and $\sigma_{P,Q}$ is the map whose definition and basic properties can be found in [1]. In particular, we are able to calculate the number of gaps of the $\tilde{H}(P,Q)$ in terms of $\sigma_{P,Q}$. By Theorem 18 in [1], for any integer c, we have

$$#\widetilde{G}(P,Q) = mg + \sum_{i=c}^{m+c-1} \#\{j > i \,|\, \sigma_{P,Q}(j) > \sigma_{P,Q}(i)\}.$$

In this work we study gap set of the subrings of the form $R = \mathcal{K} + C$, where C is the conductor of R, and give a formula for the number of $\tilde{G}(P,Q)$ via the set of pure gap numbers $\tilde{G}_0(P,Q)$ and gap numbers of R. Additionally, it contains some examples illustrating our theorems.

2. Gap numbers of local subring $R = \mathcal{K} + C$

Definition 1. Let \mathcal{F} be an algebraic function field over \mathcal{K} and P_1, P_2, \ldots, P_r be rational points of \mathcal{F} . We define $\sigma_j : \mathbb{Z}^{r-1} \to \mathbb{Z}$ by

$$\sigma_j(i_1, \dots, i_{j-1}, i_{j+1}, \dots, i_r)$$

:= min{k | (i_1, \dots, i_{j-1}, k, i_{j+1}, \dots, i_r) \in \widehat{H}(P_1, P_2, \dots, P_r)}.

If r = 2, then the map σ_2 will be the map $\sigma_{P,Q}$, introduced in [1]. Now we study gap set of R.

Lemma 2. If D is any integral divisor of the ring $R = \mathcal{K} + C$, then

$$\mathcal{L}(D) = \mathcal{K} + L(D - C).$$

Proof. One can easily prove this lemma.

Here note that the set of gap numbers of $R_n = \mathcal{K} + Q^n$ at P will be denoted by $G_n(P)$.

Lemma 3. (1) Let $R_n = \mathcal{K} + Q^n$ be a local subring of \mathcal{F} , where $Q \in P_{\mathcal{F}}$ of degree one, $n \geq 2$ and $P \in P_{\mathcal{F}}$ with $P \neq Q$. Then we have

- (a) If j is a gap number of R_n at P, then $(j, -n) \in \widehat{G}(P,Q)$.
- (b) If $j \in G(P)$, then $j \in G_n(P)$.
- (c) Let $j \in H(P)$. $j \in G_n(P)$ if and only if $\sigma_2(j) > -n$.

(2) Let $R_{n_1,n_2,\ldots,n_r} = \mathcal{K} + Q_1^{n_1}Q_2^{n_2}\cdots Q_r^{n_r}$ be a local subring of \mathcal{F} , where $n_1 + \cdots + n_r \geq 2$, deg $Q_i = 1$, $i = 1, 2, \ldots, r$, and Q_i and Q_j be distinct points for $i \neq j$. If $i \in H(P)$, $(i, -n_1, \ldots, -n_r) \in \widehat{G}(P, Q_1, \ldots, Q_r)$ such that $\sigma_1(-n_1, \ldots, -n_r) < i$, then $L(iP - \sum_{t=1}^r n_tQ_t) = L((i-1)P - \sum_{t=1}^r n_tQ_t)$.

Proof. (1) To prove (a), let us assume the opposite. If $(j, -n) \notin \widehat{G}(P,Q)$, then $(j, -n) \in \widehat{H}(P,Q)$. There exists a function $f \in R_{P,Q} \setminus \{0\}$ such that $(j, -n) = (-v_P(f), -v_Q(f))$. Hence, $L(jP-nQ) \neq L((j-1)P-nQ)$ and $j \notin G_n(P)$. (b) is clear from definitions. (c) Let $j \in H(P)$ and $-n \ge \sigma_2(j)$. Since $(j, \sigma_2(j)) \in \widehat{H}(P,Q)$, there is a function $f \in R_{P,Q} \setminus \{0\}$ such that $v_P(f) = -j$, $v_Q(f) = -\sigma_2(j) \ge n$. Therefore, $L(jP-nQ) \neq L((j-1)P-nQ)$. For converse, assume that $j \notin G_n(P)$. By Lemma 2, $L(jP-nQ) \neq L((j-1)P-nQ)$. There exists a function f such that $v_P(f) = -j$, $v_Q(f) \ge n$. On the other hand, since $(j, \sigma_2(j)) \in \widehat{H}(P,Q)$, there exists a function g such that $v_P(g) = -j$, $v_Q(g) = -\sigma_2(j) < n$. Let take h := f + g, we see that for some t < j, $v_P(h) = -t$, $v_Q(h) = -\sigma_2(j)$. Hence, $(t, \sigma_2(j)) \in \widehat{H}(P,Q)$ and $(t, \sigma_2(j)) < (j, \sigma_2(j))$, but this contradicts with the definition of σ_2 . Assuming opposite of the assertion, we can prove (2) by similar reasoning. □

The following lemma explains action of the constant field extensions to the semilocal subrings, and it can be proven by using constant field extension properties, see [12]. Now on, $\mathcal{F}'/\mathcal{K}'_0$ will denote the costant field extension of \mathcal{F}/\mathcal{K} .

435

Lemma 4. Let R' be a semilocal subring of \mathcal{F}' , $\overline{R'}$ be denote the integral closure of R' in \mathcal{F}' and C' be denote the conductor of R' in $\overline{R'}$. Then the followings hold.

- (a) $\dim_{\mathcal{K}'} \overline{R'} / R' = \delta$, $\dim_{\mathcal{K}'} \overline{R'} / C' = \gamma$.
- (b) $C' = \operatorname{Con}_{\mathcal{F}'/\mathcal{F}}(C).$

(c) For any $D \in \mathbf{D}_R$, we have $\operatorname{Con}_{\mathcal{F}'/\mathcal{F}}(D) \in \mathbf{D}_{R'}$, $\deg D = \deg \operatorname{Con}_{\mathcal{F}'/\mathcal{F}}(D)$, and $\dim_{\mathcal{K}'} \mathcal{L}(\operatorname{Con}_{\mathcal{F}'/\mathcal{F}}(D)) = \dim_{\mathcal{K}} \mathcal{L}(D)$. Thus for any $D \in \mathbf{D}_R$,

$$\dim_{\mathcal{K}'} \tilde{\mathcal{L}}(\operatorname{Con}_{\mathcal{F}'/\mathcal{F}}(D)) = \dim_{\mathcal{K}} \tilde{\mathcal{L}}(D).$$

(d) Let \mathcal{F}'/\mathcal{F} be a constant field extension and R' be as defined above. Let $Q' \in \mathbf{P}_{R'}$ be an extension of $Q \in \mathbf{P}_R$ of degree one. Then, any gap number of Q is also a gap number of Q'. In particular if deg Q = 1, then a positive integer n is a gap number of Q if and only if it is a gap number of Q'.

Theorem 5. Let \mathcal{F} be an algebraic function field over a finite field \mathcal{K} , $\#\mathcal{K}>2$. Let $R_n = \mathcal{K} + Q^n$ be a local subring of \mathcal{F} and $Q \in P_{\mathcal{F}}$, deg Q = 1, $n \ge 2$. (a) If $P \in P_{R_n}$ and deg P = 1, then the gap set of R_n at P is given by

$$G(P) \cup \{j \in H(P) : \sigma_2(j) > -n\}.$$

(b) If $P \in P_{R_n}$ and deg P = r, then the gap set of R_n at P is given by

$$G(P) \cup \{i \in H(P) : (i, \dots, i, -n) \in G(P_1, P_2, \dots, P_r, Q'), \sigma_{r+1}(i, \dots, i) > -n\},\$$

where $\mathcal{F}' = \mathcal{F}\mathcal{K}'/\mathcal{K}'$ is a constant field extension of degree r of \mathcal{F}/\mathcal{K} , and $P_k|P$, Q'|Q, k = 1, 2, 3, ..., r.

Proof. (a) Let $R_n = \mathcal{K} + Q^n$, deg Q = 1, $P \neq Q$ and deg P = 1, $n \geq 2$. Now, C = nQ, and we consider the spaces

 $L(P-nQ) \subset L(2P-nQ) \subset \dots \subset L(nP-nQ) \subset \dots \subset L((2g+n-1)P-nQ).$

It follows that the first n-1 gap values of P consist of $1, 2, \ldots, n-1$. The remaining g gap values range between $\delta + 1 = n$ and 2g + n - 1. By Lemma 3 and Lemma 2, the gap set of R_n is $\{1, 2, \ldots, n-1\} \cup \{i \in G(P) : i \geq n\} \cup \{j \in H(P) : \sigma_2(j) > -n\}$, and this set is also written of the following form

$$G(P) \cup \{j \in H(P) : \sigma_2(j) > -n\}.$$

(b) Let $P \in P_{R_n}$ and deg P = r. P has at most $\left[\frac{g_R}{r}\right]$ gap numbers, and for any gap number $j \leq \left[\frac{2g_R-2}{r}\right] + 1$. If $\mathcal{F}' = \mathcal{F}\mathcal{K}'$ is a constant field extension of degree r, then P splits completely in \mathcal{F}'/\mathcal{F} . Hence, there are r distinct places P_1, P_2, \ldots, P_r of degree one lying over the place P. By Lemma 4, $R'_n = \mathcal{K}' + Q'^n$ is a local subring of \mathcal{F}' and an extension of R_n , C' = nQ' and $\operatorname{Con}_{\mathcal{F}'/\mathcal{F}}(iP) = \sum_{t=1}^r iP_t$. We can easily see that $i \in G_n(P)$ if and only if

$$\dim_{\mathcal{K}} \mathcal{L}(iP) - \dim_{\mathcal{K}} \mathcal{L}((i-1)P) = \dim_{\mathcal{K}'} \mathcal{L}(\sum_{t=1}^r iP_t) - \dim_{\mathcal{K}'} \mathcal{L}(\sum_{t=1}^r (i-1)P_t).$$

Moreover, we have $\mathcal{L}(\sum_{t=1}^{r} iP_t) = \mathcal{K}' + L(\sum_{t=1}^{r} iP_t - nQ')$ and $L(\sum_{t=1}^{r} iP_t - nQ') = L(\sum_{t=1}^{r} (i-1)P_t - nQ')$. On the other hand, if $i \in G(P)$, then $i \in G_n(P)$. Now, we take $i \in H(P)$. It is easy to see that $i \in H(P)$ if and only if $(i, i, \ldots, i) \in H(P_1, \ldots, P_r)$, i.e., $(i, i, \ldots, i, 0) \in \widehat{H}(P_1, \ldots, P_r, Q')$. If $(i, \ldots, i, -n) \in \widehat{G}(P_1, \ldots, P_r, Q')$ and $\sigma_{r+1}(i, \ldots, i) > -n$, using similar idea which can be seen in the proof of Lemma 3, we have $L(\sum_{t=1}^{r} iP_t - nQ') = L(\sum_{t=1}^{r} (i-1)P_t - nQ')$.

Corollary 6. (a) $\#\{j \in H(P) : \sigma_2(j) > -n\} = n - 1.$

(b) If $P \in P_{R_n}$ is a rational and Weierstrass point of \mathcal{F} , then P is also Weierstrass point of R_n .

(c) Let $R_n = \mathcal{K} + Q^n$ be a local subring of \mathcal{F} over a finite field \mathcal{K} , deg Q = 1and $n \geq 2$, $\#\mathcal{K}>2$. If n > m and j is a gap number of R_m at a point P of deg P = 1, then j is also gap number of R_n at P.

Proof. Using the fact that the number of gaps of R_n is $g_R = g + \delta = g + n - 1$ and Theorem 5, we have (a). We get (b) from the definition of Weierstrass point and Theorem 5. If n > m and $\sigma_2(j) > -m$, then $\sigma_2(j) > -n$. Hence, (c) is clear by Theorem 5.

Definition 7. Let $(a, b) \in \widehat{G}(P, Q)$. If dim $L(aP+bQ) = \dim L(aP+(b-1)Q) = \dim L((a-1)P+bQ)$, then (a, b) is called a pure gap. The set of pure gaps is denoted by $\widehat{G}_0(P, Q)$, and the pure gaps set in $\widetilde{G}(P, Q)$ is denoted by $\widetilde{G}_0(P, Q)$.

Lemma 8. $(a,b) \in \widetilde{G}_0(P,Q)$ if and only if $(k,b), (a,t) \in \widetilde{G}(P,Q)$ for all $k \leq a$ and $t \leq b$.

Proof. Let $(a, b) \in \widehat{G}(P, Q)$. If dim $L(aP+bQ) = \dim L((a-1)P+bQ)+1$, then there exists j such that $j \leq a, (j, b) \in \widehat{H}(P, Q)$. In this case $(a, b') \in \widehat{H}(P, Q)$ for $b' \leq b$, then $(a, b) \in \widehat{H}(P, Q)$, but this is a contradiction. Similarly, we obtain dim $L(aP+bQ) \neq \dim L(aP+(b-1)Q)+1$. Hence we have lemma. \Box

Now we denote $\Gamma := \{(a, \sigma_2(a)) : 0 \le a \le 2g + n - 1\}$ and we use natural partial order defined as

$$(a_1, b_1) \le (a_2, b_2) \Longleftrightarrow a_1 \le a_2, b_1 \le b_2,$$

and for any pair (a, b) define

$$\Gamma_{(a,b)} = \{ (a',b') \in \Gamma : a' \le a, b' \le b \}.$$

Lemma 9. $\#\Gamma_{(a,\sigma_2(a))} = \dim L(aP + \sigma_2(a)Q).$

Proof. Since $(a, \sigma_2(a)) \in \widehat{H}(P, Q)$, we have dim $L((a-1)P + \sigma_2(a)Q) + 1 = \dim L(aP + \sigma_2(a)Q)$. Then $(j, \sigma_2(a)) \in \widehat{H}(P,Q)$ for some $j \leq a$. Since $(j, \sigma_2(j)) \in \widehat{H}(P,Q)$, we get $\sigma_2(j) < \sigma_2(a)$. Hence, $(j, \sigma_2(j)) \in \Gamma_{(a, \sigma_2(a))}$ and we have lemma.

Now, we can calculate the number of gaps at the fundamental period via $\widetilde{G}_0(P,Q)$.

Theorem 10. Denote by m the period of the semigroup $\widehat{H}(P,Q)$. The number of gaps of the semigroup $\widetilde{H}(P,Q)$ is given by

$$\#\widetilde{G}(P,Q) = \#\widetilde{G}_0(P,Q) + 2\sum_{n=2}^{m+1} \dim \widetilde{\mathcal{L}}(\sigma_2^{-1}(-n)P)$$

Proof. Let take $-n = \sigma_2(i)$ and $i \in H(P)$. In this case we have

$$\dim L(iP + \sigma_2(i)Q) = \#\{(j, \sigma_2(j)) : (j, \sigma_2(j)) \le (i, \sigma_2(i))\}$$

by Lemma 9. It is easy to see that

$$\label{eq:intermediate} \begin{split} i-1 &= (n-1) + \#\{j \in G_n(P): n \leq j < i\} + \#\{(j,\sigma_2(j)): (j,\sigma_2(j)) < (i,-n)\} \\ \text{therefore,} \end{split}$$

$$i - 1 = (n - 1) + \#\{j \in G_n(P) : n \le j < i\} + \dim L(iP + \sigma_2(i)Q) - 1,$$

and using Riemann-Roch-Rosenlicht theorem, we have

$$\#\{j \in G_n(P) : n \le j < \sigma_2^{-1}(-n)\} = g - \dim \mathcal{L}(\sigma_2^{-1}(-n)P),$$
$$\sum_{n=2}^{m+1} \#\{j \in G_n(P) : n \le j < \sigma_2^{-1}(-n)\} = mg - \sum_{n=2}^{m+1} \dim \widetilde{\mathcal{L}}(\sigma_2^{-1}(-n)P).$$

Hence

$$mg = \#$$
 Pure Gaps $+ \sum_{n=2}^{m+1} \dim \widetilde{\mathcal{L}}(\sigma_2^{-1}(-n)P).$

On the other hand,

$$\#\{j > \sigma_2^{-1}(-n) \mid \sigma_2(j) > -n\} = g + n - i + \dim L(\sigma_2^{-1}(-n)P - nQ) - 1$$

and

$$\sum_{n=2}^{m+1} \#\{j > \sigma_2^{-1}(-n) \,|\, \sigma_2(j) > -n)\} = \sum_{n=2}^{m+1} \dim \widetilde{\mathcal{L}}(\sigma_2^{-1}(-n)P).$$

From Theorem 18 in [1], we obtain

$$\#\widetilde{G}(P,Q) = \# \text{ Pure Gaps} + 2\sum_{n=2}^{m+1} \dim \widetilde{\mathcal{L}}(\sigma_2^{-1}(-n)P).$$

Example 1. Let $\mathcal{F} = \mathcal{K}(\mathbf{x}, \mathbf{y})$ be a function field given by $y^2 = x^3 - x$, where \mathcal{K} is a finite field, char $\mathcal{K} = 5$. Then (x) = 2P - 2Q. Now we consider the subring $R_2 = \mathcal{K} + Q^2$. Since 2 is period for the semigroup $\widehat{H}(P, Q)$, 1 and 3 are gap numbers of R_2 at P.

Example 2. Let q be a prime power and m a positive integer (m, q) = 1. Now, we will investigate the algebraic function field C_m defined over \mathbb{F}_{q^2} by the equation $y^q + y = x^m$. If m = q + 1, C_m is the Hermitian function field [2]. Let $P = P_{00}$ and $Q = P_{\infty}$, where P_{∞} denotes the point at infinity and P_{ab} denotes the common zero of x - a and y - b. The divisors of x and y are given by

$$(x) = \sum_{\beta^q + \beta = 0} P_{0\beta} - qP_{\infty}$$
 and $(y) = m(P_{00} - P_{\infty}).$

In fact *m* is the period of the semigroup $\widehat{H}(P,Q)$. We have $\sigma_2(i) = -iq$ for $-m < i \le 0$, and $\sigma_2(-i \cdot m) = i \cdot m$, $\sigma_2(-1 - im) = q + im$ for any $i \in \mathbb{Z}$.

Theorem 11. Let C_m be the algebraic function field over \mathbb{F}_{q^2} given by the equation $y^q + y = x^m$. We denote by P the zero of y and by Q the pole of y. Let $R_n = \mathbb{F}_{q^2} + Q^n$ be a local subring of C_m , where $n \ge 2$, and m = q + 1 or m|q+1. Then the set of gap numbers of R_n at P is one of the following sets

- (i) { $aq: 0 < a < n = \alpha$ } \cup G(P).
- (ii) $\{1, 2, \dots, n-1, j+n ; j \in G_{\alpha}(P), n = m\beta + \alpha, 0 \le \alpha < m\}.$

Proof. Now, we give a proof for m = q + 1, the other case can be proven similarly. Let $R_n = \mathbb{F}_{q^2} + Q^n$ be a local subring of \mathcal{C}_{q+1} , $n \ge 2$. If $j \in G(P)$, then $j \in G_n(P)$. If $j \in H(P)$ and $j \le 2g + n - 1$, then j = aq + bm, where a, bare non-negative integers and $\sigma_2(j) = -(a + bm)$.

case 1. If $n = \alpha < m$, then $\sigma_2(j) = -a < \alpha$ and $j = aq \in G_n(P)$.

case 2. If $n = \alpha + m\beta$ and $\alpha < m$, then $\sigma_2^{-1}(-n) = \alpha q + m\beta$. Using periodicity, we have $(j, -n) = (aq + mb, -(\beta m + \alpha)) = (aq + m(b - \beta), -\alpha)$. If $(aq + m(b - \beta), -\alpha) \in \widehat{G}(P, Q)$, then $(j, -n) \in \widehat{G}(P, Q)$ and $j \in G_n(P)$. Hence, we have $G_n(P) = \{1, 2, \ldots, n - 1, j + n; j \in G_\alpha(P)\}$.

case 3. Let $n = \beta m$. If j is a gap number of the C_{q+1} , then $j + \beta m \in G_n(P)$. On the other hand, $(\beta m, -\beta m)$ is always in $\widehat{H}(P, Q)$. Hence,

$$\{1,2,\ldots,m\beta-1,j+m\beta\;;j\in G(P)\}.$$
 is gap set of $R_{\beta m}=\mathbb{F}_{q^2}+Q^{\beta m}$ at $P.$

It is well known that any rational point of Hermitian curve is also a Weierstrass point. By Corollary 6, one sees that if $P \in P_{R_n}$ is a rational point, then P is a Weierstrass point of R_n . Now, we consider the curve $y^4 + y = x^5$ over the finite field with 16 elements. Let $R_4 = \mathcal{K} + Q^4$, where Q is the point at infinity, and let take $(w) = (xy^2dx)$, (dx) = 10Q. Consider divisor $W_R := (W_x) + (\sum_{i=1}^{g_R} \epsilon_i)(dx) + g_R(w) = ((xy^2)^9(x^{16} + x)^4) + 390Q + 9(xy^2dx)$, where W_x is the Wronskian determinant. Any point $P \in P_R$ is a Weierstrass points of R if and only if $v_P(W_R) > 0$. Therefore, Weierstrass points of the local subring $R_4 = \mathcal{K} + Q^4$ are exactly rational points of the curve different from Q.

Here we consider subring $R_{n_1,n_2} = \mathcal{K} + Q_1^{n_1}Q_2^{n_2}$, $n_1 + n_2 \ge 2$, deg $Q_k = 1$, k = 1, 2. For any $P \in P_R$ of degree one if $i \in G(P)$, then we have $i \in G_{n_1,n_2}(P)$.

NESRIN TUTAŞ

Let define the map $\sigma_1(-n_1, -n_2) = \min\{j : (j, -n_1, -n_2) \in \widehat{H}(P, Q_1, Q_2)\}$. If $i \in H(P)$ and if there exists a pair (a, b) such that $(a, b) > (-n_1, -n_2)$ and $\sigma_1(a, b) = i > \sigma_1(-n_1, -n_2)$, then $i \in G_{n_1, n_2}(P)$. Thus the gap set of R_{n_1, n_2} is $G(P) \cup \{i \in H(P) : (a, b) > (-n_1, -n_2), \sigma_1(a, b) = i > \sigma_1(-n_1, -n_2)\}$. Now, we take the Hermitian curve C_5 and the local subring $R_{1,1} = F_{q^2} + Q_1Q_2$ and points $Q_1 = P_{00}, Q_2 = P_{0b}$, where $b^q + b = 0$. Let $P = P_{\infty}, \sigma_1(-1, -1) = 4$, $(4, -1, -1) \in \widehat{H}(P, Q_1, Q_2)$. Since $5 \in H(P)$, we have $(5, -1, 0), (5, 0, -1), (5, 0, 0), (5, -5, 0), (5, 0, -5) \in \widehat{H}(P, Q_1, Q_2)$. Hence, 5 is a gap number of $R_{1,1}$ at P. Similarly, $G_{1,1}(P) = \{1, 2, 3, 5, 6, 7, 11\}$. For another example, we take the subring $R_{3,2} = F_{q^2} + Q_1^3Q_2^2$. Then $\sigma_1(-3, -2) = 12, (12, -3, -2) \in \widehat{H}(P, Q_1, Q_2)$, and $G_{3,2}(P) = \{1, 2, 3, \dots, 11\}$.

Corollary 12. The number of pure gaps of C_m in the fundamental region is given by

(a)
$$\#\tilde{G}_0(P,Q) = \frac{1}{3}q(q^2-1)$$
, where $m = q+1$
(b) $\#\tilde{G}_0(P,Q) = \frac{1}{6}(m-1)(2mq-q-m-1)$, where $m|q+1$.

Proof. It follows from Theorem 10 and the following formulas

$$#\widetilde{G}(P,Q) = (m+1)g + {q \choose 3}, \ m = q+1, #\widetilde{G}(P,Q) = (m+1)g + \frac{1}{6}(m-2)(m-1)(q-2), \ m|q+1$$

which are given in [1].

For an example, the curve $y^{11} + y = x^4$ has 36 pure gap numbers.

Example 3. The Suzuki curve over the field \mathbb{F}_q is defined by the equation $y^q - y = x^{q_0}(x^q - x)$, where $q_0 = 2^s$, $q = 2^{2s+1}$ and s is a positive integer. We denote by $P = P_{00}$ the zero of both x and y and by $O = P_{\infty}$ the pole of x. It is also known that the divisor $(q + 2q_0 + 1)(P_{00} - P_{\infty})$ is principal (see [9]). Here, $m := q + 2q_0 + 1$ and $H(P_{\infty}) = \langle q, q + q_0, q + 2q_0, q + 2q_0 + 1 \rangle$. One easily sees that $\sigma_2(q) = -1$, $\sigma_2(q + q_0) = -1 - q_0$, $\sigma_2(q + 2q_0) = -1 - 2q_0$, and $\sigma_2(m) = -m$. This determines the involution σ_2 completely. For $j \in H(P)$ and $j = aq + b(q + q_0) + c(q + 2q_0) + d(q + 2q_0 + 1)$, then we have $\sigma_2(j) = -(a + b(1 + q_0) + c(1 + 2q_0) + d(q + 2q_0 + 1))$. If n < m,

 $n = (1 + 2q_0)\alpha + l, \ 0 \le l < 1 + 2q_0, \qquad l = \beta(q_0 + 1) + \tau, \ \tau < q_0 + 1$ and we get $\sigma_2^{-1}(-n) = \sigma_1(-n) = \tau q + \beta(q + q_0) + \alpha(q + 2q_0).$

Theorem 13. Let \mathcal{F} be the Suzuki function field over \mathbb{F}_q and $R_n = \mathcal{K} + Q^n$ be a local subring of \mathcal{F} , deg Q = 1. Assume that $P \in P_{R_n}$ of degree one, and $m > n \ge 2$. If $j \in G_n(P) \setminus G(P)$ and n is in the form above, then j can be written one of the following forms:

(I) (i) $\tau q + b(q + q_0) + \alpha(q + 2q_0), b \le \beta.$ (ii) $a + b(q + q_0) + \alpha(q + 2q_0), b \le \beta, a < q_0 + 1.$

440

(iii) $aq + b(q + q_0) + \alpha(q + 2q_0), b < \beta, \tau < a < q_0 + 1.$ (II) $c < \alpha, \alpha = c + u$, where u is an integer,

(i)
$$\tau + b(q + q_0) + c(q + 2q_0), b \le \beta + u \left[\frac{uq_0}{1+q_0}\right].$$

(ii) $a + b(q + q_0) + c(q + 2q_0), a < \tau, b \le \beta + u + \left[\frac{uq_0 + \tau}{1+q_0}\right].$
(iii) $a + b(q + q_0) + c(q + 2q_0), \tau < a, b \le \beta + u \left[\frac{uq_0}{1+q_0}\right].$

Proof. Let n < m. If $j \in H(P)$, then $j = aq + b(q + q_0) + c(q + 2q_0)$. Here we note that $a + b(1 + q_0) < 1 + 2q_0$ and if j = km, then j is not a gap number at P. Using Theorem 5, we have the theorem.

If n = m, we have $G_n(P) = \{1, 2, ..., m - 1, j + m ; j \in G(P)\}$. Generally, if n = km + l with $0 \le l < m$, using periodicity we obtain

$$G_n(P) = \{1, 2, \dots, n-1, j+n ; j \in G_l(P)\}.$$

Lemma 14. For the Suzuki function field defined by $y^q - y = x^{q_0}(x^q - x)$ over \mathbb{F}_q

$$#\widetilde{G}_0(P,Q) = \frac{1}{15}q_0 \left(5q_0^2 - 25q_0 - 40q_0^3 + 46q_0^6 - 6\right).$$

Proof. It follows from [1] and Theorem 10.

If $q_0 = 2$, the number of pure gaps is 136 for Suzuki curve.

Acknowledgement. Author thanks the Akdeniz University Research Fund for its support of this project.

References

- P. Beelen and N. Tutaş, A generalization of the Weierstrass semigroup, J. Pure Appl. Algebra 207 (2006), no. 2, 243–260.
- [2] A. Garcia and P. Viana, Weierstrass points on certain nonclassical curves, Arch. Math. (Basel) 46 (1986), no. 4, 315–322.
- M. Homma, The Weierstrass semigroup of a pair of points on a curve, Arch. Math. (Basel) 67 (1996), no. 4, 337–348.
- [4] E. Kang and S. J. Kim, Special pairs in the generating subset of the Weierstrass semigroup at a pair, Geom. Dedicata 99 (2003), 167–177.
- [5] H. I. Karakaş, On Rosenlicht's generalization of Riemann-Roch theorem and generalized Weierstrass points, Arch. Math. (Basel) 27 (1976), no. 2, 134–147.
- [6] _____, Application of generalized Weierstrass points: divisibility of divisor classes, J. Reine Angew. Math. 299/300 (1978), 388–395.
- [7] S. J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Arch. Math. (Basel) 62 (1994), no. 1, 73–82.
- [8] G. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Des. Codes Cryptogr. 22 (2001), no. 2, 107–121.
- [9] _____, Codes from the Suzuki function field, IEEE Trans. Inform. Theory 50 (2004), no. 12, 3298–3302.
- [10] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952), 169–191.
- [11] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.

NESRIN TUTAŞ

[12] N. Tutaş, On Weierstrass point of semilocal subrings, JP J. Algebra Number Theory Appl. 13 (2009), no. 2, 221–235.

DEPARTMENT OF MATHEMATICS AKDENIZ UNIVERSITY 07058, ANTALYA, TURKEY *E-mail address:* ntutas@akdeniz.edu.tr