REMARKS ON THE GAP SET OF $R=\mathcal{K}+C$

Nesrin Tutaş

Abstract

G}(P, Q)\), a new generalization of the set of gap numbers of a pair of points, was described in [1]. Here we study gap numbers of local subring $R=\mathcal{K}+C$ of algebraic function field over a finite field and we give a formula for the number of elements of $\tilde{G}(P, Q)$ depending on pure gaps and R.

1. Introduction

The concept of Weierstrass point is a well known notion, and it has many generalizations and applications. One of them, generalization to the semilocal subring of an algebraic function field, was given by Karakaş [6]. This allows a function field \mathcal{F} may have subrings with Weierstrass points even if genus $g \in\{0,1\}$. Now, we give a brief review of the theory.

Let \mathcal{F} be an algebraic function field over a finite field \mathcal{K}, and $\mathcal{F}^{\prime}=\mathcal{K}^{\prime} \mathcal{F}$ be a constant field extension of $\mathcal{F} / \mathcal{K}$. Let R be a semilocal subring of \mathcal{F} with \mathcal{K} $\subset R \subseteq \mathcal{F}$ and let the quotient field of R be \mathcal{F}. Our notations will be as follows:
$\mathbf{P}_{\mathcal{F}}$: the set of prime divisors (or points) of $\mathcal{F} / \mathcal{K}$.
O_{P}, v_{P} : for any $P \in \mathbf{P}_{\mathcal{F}}$, the valuation ring of P, and valuation at P.
(x) : divisor of $x \in F ;(w)$: divisor of w Weil differential.
$S(R)$: the set of prime divisors whose valuation rings contain R.
It is known that $|S(R)|<\infty$. If $R \neq \mathcal{F}$, then $S(R) \neq \emptyset$.
$\mathbf{P}_{R}:=\mathbf{P}_{\mathcal{F}} \backslash S(R)$.
$\mathbf{D}_{\mathcal{F}}\left(\right.$ resp., $\left.\mathbf{D}_{R}\right)$: the free abelian group generated by $\mathbf{P}_{\mathcal{F}}$ (resp., \mathbf{P}_{R}).
If $R^{\prime}:=\mathcal{K}^{\prime} R$, then R^{\prime} is a semilocal subring of \mathcal{F}^{\prime} with

$$
S\left(R^{\prime}\right)=\left\{P^{\prime} \in \mathbf{P}_{\mathcal{F}^{\prime}}: P^{\prime} \mid P \text { for some } P \in S(R)\right\} .
$$

For any $D \in \mathbf{D}_{\mathcal{F}}$, we define $L(D)=\{x \in F:(x) \geq-D\} \cup\{0\}$ and $\mathcal{L}(D)=L(D) \cap R$. It is well known that $\operatorname{dim}_{\mathcal{K}} L(D), \operatorname{dim}_{\mathcal{K}} \mathcal{L}(D), \delta=\operatorname{dim}_{\mathcal{K}} \bar{R} / R$ and $\gamma=\operatorname{dim}_{\mathcal{K}} \bar{R} / C$ are finite, where \bar{R} is the integral closure of R in \mathcal{F} and C is the conductor of R in \bar{R}. For $P \in S(R)$, there is uniquely determined non-negative integer c_{P} such that $C=\left\{y \in \mathcal{F}: v_{P}(y) \geq c_{P}, P \in S(R)\right\}$. The

[^0]divisor $\sum_{P \in S(R)} c_{P} P$ is also denoted by C, and $\operatorname{deg} C=\gamma$. For any $D \in \mathbf{D}_{R}$, Riemann-Roch-Rosenlicht's theorem can be formulated as
$$
\operatorname{dim}_{\mathcal{K}} \mathcal{L}(D)=\operatorname{deg} D+1-g_{R}+\operatorname{dim}_{\mathcal{K}} \widetilde{\mathcal{L}}(D)
$$
where $g_{R}=g+\delta$, and g is the genus of \mathcal{F}. It can be shown that $\delta \leq \gamma \leq 2 \delta$. $\gamma=2 \delta$ if and only if, for any $D \in D_{R}$ and ω Weil differential such that $(\omega)+C \in$ $D_{R}, \operatorname{dim}_{\mathcal{K}} \widetilde{\mathcal{L}}(D)=\operatorname{dim}_{\mathcal{K}} \mathcal{L}((\omega)+C-D)$. As a result of this formulation, we immediately see that $\operatorname{dim}_{\mathcal{K}} \mathcal{L}((\omega)+C-D)=0$ if $\operatorname{deg} D \geq 2 g+\gamma-1$. For any $P \in P_{R}$ of degree one, we have $\operatorname{dim}_{\mathcal{K}} \mathcal{L}((2 g+\gamma-1) P)=g+\gamma-\delta$ and therefore there are g_{R} positive integers $\lambda \leq 2 g+\gamma-1$ for which $\operatorname{dim}_{\mathcal{K}} \mathcal{L}(\lambda P)=\operatorname{dim}_{\mathcal{K}}$ $\mathcal{L}((\lambda-1) P)$. We call these integers gap numbers (otherwise, pole numbers) of R at P. We call P a Weierstrass point of R, if the number of points of R having the same gap numbers as P is finite. Otherwise, P is called an ordinary point of R. If $R=\mathcal{F}$, then we have classical Weierstrass points theory. During the last decades the set of pole numbers $H(P)$, called Weierstrass semigroup, is also generalized to the r-tuple semigroup $H\left(P_{1}, \ldots, P_{r}\right)$, see [3], [4], [7]. Its many applications take place in the coding theory, for example in [8] and [9].

For any r-tuple P_{1}, \ldots, P_{r} of distinct rational points we denote by $R_{P_{1}, \ldots, P_{r}}$ the ring of functions that are regular outside the points P_{1}, \ldots, P_{r}. Throughout this paper, we will assume that $\# \mathcal{K}>r$. For notational simplicity we define $v_{P_{1}, \ldots, P_{r}}(f):=\left(v_{P_{1}}(f), \ldots, v_{P_{r}}(f)\right)$ for any non-zero function f. In [1], authors gave a new generalization of the concept r-tuple Weierstrass semigroup

$$
\tilde{H}\left(P_{1}, \ldots, P_{r}\right):=\widehat{H}\left(P_{1}, \ldots, P_{r}\right) / v_{P_{1}, \ldots, P_{r}}\left(R_{P_{1}, \ldots, P_{r}}^{*}\right)
$$

and the complement of $\widetilde{H}\left(P_{1}, \ldots, P_{r}\right)$ is called the set of gaps, and denoted by $\widetilde{G}\left(P_{1}, \ldots, P_{r}\right)$. For $\widehat{H}\left(P_{1}, \ldots, P_{r}\right)$ and $\widehat{G}\left(P_{1}, \ldots, P_{r}\right)$ see [1]. $\# \widetilde{G}\left(P_{1}, \ldots, P_{r}\right)<$ ∞ and their properties were investigated extensively in [1]. Now, we specialize to the case $r=2$. Let P and Q be two rational points of \mathcal{F}. There exists a positive integer m, called the period of the semigroup $\widetilde{H}(P, Q)$, such that $\{\lambda \cdot(m,-m) \mid 0 \leq \lambda \leq 1\}$ is a fundamental region. We have $\sum_{i=c}^{m+c-1}(i+$ $\left.\sigma_{P, Q}(i)\right)=m g$, where $c \in \mathbb{Z}$ and $\sigma_{P, Q}$ is the map whose definition and basic properties can be found in [1]. In particular, we are able to calculate the number of gaps of the $\widetilde{H}(P, Q)$ in terms of $\sigma_{P, Q}$. By Theorem 18 in [1], for any integer c, we have

$$
\# \widetilde{G}(P, Q)=m g+\sum_{i=c}^{m+c-1} \#\left\{j>i \mid \sigma_{P, Q}(j)>\sigma_{P, Q}(i)\right\}
$$

In this work we study gap set of the subrings of the form $R=\mathcal{K}+C$, where C is the conductor of R, and give a formula for the number of $\widetilde{G}(P, Q)$ via the set of pure gap numbers $\widetilde{G}_{0}(P, Q)$ and gap numbers of R. Additionally, it contains some examples illustrating our theorems.

2. Gap numbers of local subring $R=\mathcal{K}+C$

Definition 1. Let \mathcal{F} be an algebraic function field over \mathcal{K} and $P_{1}, P_{2}, \ldots, P_{r}$ be rational points of \mathcal{F}. We define $\sigma_{j}: \mathbb{Z}^{r-1} \rightarrow \mathbb{Z}$ by

$$
\begin{aligned}
& \sigma_{j}\left(i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{r}\right) \\
:= & \min \left\{k \mid\left(i_{1}, \ldots, i_{j-1}, k, i_{j+1}, \ldots, i_{r}\right) \in \widehat{H}\left(P_{1}, P_{2}, \ldots, P_{r}\right)\right\} .
\end{aligned}
$$

If $r=2$, then the map σ_{2} will be the map $\sigma_{P, Q}$, introduced in [1]. Now we study gap set of R.
Lemma 2. If D is any integral divisor of the ring $R=\mathcal{K}+C$, then

$$
\mathcal{L}(D)=\mathcal{K}+L(D-C)
$$

Proof. One can easily prove this lemma.
Here note that the set of gap numbers of $R_{n}=\mathcal{K}+Q^{n}$ at P will be denoted by $G_{n}(P)$.

Lemma 3. (1) Let $R_{n}=\mathcal{K}+Q^{n}$ be a local subring of \mathcal{F}, where $Q \in P_{\mathcal{F}}$ of degree one, $n \geq 2$ and $P \in P_{\mathcal{F}}$ with $P \neq Q$. Then we have
(a) If j is a gap number of R_{n} at P, then $(j,-n) \in \widehat{G}(P, Q)$.
(b) If $j \in G(P)$, then $j \in G_{n}(P)$.
(c) Let $j \in H(P) . j \in G_{n}(P)$ if and only if $\sigma_{2}(j)>-n$.
(2) Let $R_{n_{1}, n_{2}, \ldots, n_{r}}=\mathcal{K}+Q_{1}^{n_{1}} Q_{2}^{n_{2}} \cdots Q_{r}^{n_{r}}$ be a local subring of \mathcal{F}, where $n_{1}+\cdots+n_{r} \geq 2, \operatorname{deg} Q_{i}=1, i=1,2, \ldots, r$, and Q_{i} and Q_{j} be distinct points for $i \neq j$. If $i \in H(P),\left(i,-n_{1}, \ldots,-n_{r}\right) \in \widehat{G}\left(P, Q_{1}, \ldots, Q_{r}\right)$ such that $\sigma_{1}\left(-n_{1}, \ldots,-n_{r}\right)<i$, then $L\left(i P-\sum_{t=1}^{r} n_{t} Q_{t}\right)=L\left((i-1) P-\sum_{t=1}^{r} n_{t} Q_{t}\right)$.

Proof. (1) To prove (a), let us assume the opposite. If $(j,-n) \notin \widehat{G}(P, Q)$, then $(j,-n) \in \widehat{H}(P, Q)$. There exists a function $f \in R_{P, Q} \backslash\{0\}$ such that $(j,-n)=$ $\left(-v_{P}(f),-v_{Q}(f)\right)$. Hence, $L(j P-n Q) \neq L((j-1) P-n Q)$ and $j \notin G_{n}(P)$. (b) is clear from definitions. (c) Let $j \in H(P)$ and $-n \geq \sigma_{2}(j)$. Since $\left(j, \sigma_{2}(j)\right) \in$ $\widehat{H}(P, Q)$, there is a function $f \in R_{P, Q} \backslash\{0\}$ such that $v_{P}(f)=-j, v_{Q}(f)=$ $-\sigma_{2}(j) \geq n$. Therefore, $L(j P-n Q) \neq L((j-1) P-n Q)$. For converse, assume that $j \notin G_{n}(P)$. By Lemma 2, $L(j P-n Q) \neq L((j-1) P-n Q)$. There exists a function f such that $v_{P}(f)=-j, v_{Q}(f) \geq n$. On the other hand, since $\left(j, \sigma_{2}(j)\right) \in \widehat{H}(P, Q)$, there exists a function g such that $v_{P}(g)=-j, v_{Q}(g)=$ $-\sigma_{2}(j)<n$. Let take $h:=f+g$, we see that for some $t<j, v_{P}(h)=-t$, $v_{Q}(h)=-\sigma_{2}(j)$. Hence, $\left(t, \sigma_{2}(j)\right) \in \widehat{H}(P, Q)$ and $\left(t, \sigma_{2}(j)\right)<\left(j, \sigma_{2}(j)\right)$, but this contradicts with the definition of σ_{2}. Assuming opposite of the assertion, we can prove (2) by similar reasoning.

The following lemma explains action of the constant field extensions to the semilocal subrings, and it can be proven by using constant field extension properties, see [12]. Now on, $\mathcal{F}^{\prime} / \mathcal{K}_{0}^{\prime}$ will denote the costant field extension of $\mathcal{F} / \mathcal{K}$.

Lemma 4. Let R^{\prime} be a semilocal subring of $\mathcal{F}^{\prime}, \overline{R^{\prime}}$ be denote the integral closure of R^{\prime} in \mathcal{F}^{\prime} and C^{\prime} be denote the conductor of R^{\prime} in $\overline{R^{\prime}}$. Then the followings hold.
(a) $\operatorname{dim}_{\mathcal{K}^{\prime}} \overline{R^{\prime}} / R^{\prime}=\delta, \operatorname{dim}_{\mathcal{K}^{\prime}} \overline{R^{\prime}} / C^{\prime}=\gamma$.
(b) $C^{\prime}=\operatorname{Con}_{\mathcal{F}^{\prime} / \mathcal{F}}(C)$.
(c) For any $D \in \mathbf{D}_{R}$, we have $\operatorname{Con}_{\mathcal{F}^{\prime} / \mathcal{F}}(D) \in \mathbf{D}_{R^{\prime}}, \operatorname{deg} D=\operatorname{deg} \operatorname{Con}_{\mathcal{F}^{\prime} / \mathcal{F}}(D)$, and $\operatorname{dim}_{\mathcal{K}^{\prime}} \mathcal{L}\left(\operatorname{Con}_{\mathcal{F}^{\prime} / \mathcal{F}}(D)\right)=\operatorname{dim}_{\mathcal{K}} \mathcal{L}(D)$. Thus for any $D \in \mathbf{D}_{R}$,

$$
\operatorname{dim}_{\mathcal{K}^{\prime}} \tilde{\mathcal{L}}\left(\operatorname{Con}_{\mathcal{F}^{\prime} / \mathcal{F}}(D)\right)=\operatorname{dim}_{\mathcal{K}} \tilde{\mathcal{L}}(D)
$$

(d) Let $\mathcal{F}^{\prime} / \mathcal{F}$ be a constant field extension and R^{\prime} be as defined above. Let $Q^{\prime} \in \mathbf{P}_{R^{\prime}}$ be an extension of $Q \in \mathbf{P}_{R}$ of degree one. Then, any gap number of Q is also a gap number of Q^{\prime}. In particular if $\operatorname{deg} Q=1$, then a positive integer n is a gap number of Q if and only if it is a gap number of Q^{\prime}.

Theorem 5. Let \mathcal{F} be an algebraic function field over a finite field $\mathcal{K}, \# \mathcal{K}>2$. Let $R_{n}=\mathcal{K}+Q^{n}$ be a local subring of \mathcal{F} and $Q \in P_{\mathcal{F}}, \operatorname{deg} Q=1, n \geq 2$.
(a) If $P \in P_{R_{n}}$ and $\operatorname{deg} P=1$, then the gap set of R_{n} at P is given by

$$
G(P) \cup\left\{j \in H(P): \sigma_{2}(j)>-n\right\}
$$

(b) If $P \in P_{R_{n}}$ and $\operatorname{deg} P=r$, then the gap set of R_{n} at P is given by

$$
G(P) \cup\left\{i \in H(P):(i, \ldots, i,-n) \in \widehat{G}\left(P_{1}, P_{2}, \ldots P_{r}, Q^{\prime}\right), \sigma_{r+1}(i, \ldots, i)>-n\right\}
$$

where $\mathcal{F}^{\prime}=\mathcal{F} \mathcal{K}^{\prime} / \mathcal{K}^{\prime}$ is a constant field extension of degree r of $\mathcal{F} / \mathcal{K}$, and $P_{k} \mid P$, $Q^{\prime} \mid Q, k=1,2,3, \ldots, r$.
Proof. (a) Let $R_{n}=\mathcal{K}+Q^{n}, \operatorname{deg} Q=1, P \neq Q$ and $\operatorname{deg} P=1, n \geq 2$. Now, $C=n Q$, and we consider the spaces
$L(P-n Q) \subset L(2 P-n Q) \subset \cdots \subset L(n P-n Q) \subset \cdots \subset L((2 g+n-1) P-n Q)$.
It follows that the first $n-1$ gap values of P consist of $1,2, \ldots, n-1$. The remaining g gap values range between $\delta+1=n$ and $2 g+n-1$. By Lemma 3 and Lemma 2, the gap set of R_{n} is $\{1,2, \ldots, n-1\} \cup\{i \in G(P): i \geq n\} \cup\{j \in$ $\left.H(P): \sigma_{2}(j)>-n\right\}$, and this set is also written of the following form

$$
G(P) \cup\left\{j \in H(P): \sigma_{2}(j)>-n\right\}
$$

(b) Let $P \in P_{R_{n}}$ and $\operatorname{deg} P=r . P$ has at most $\left[\frac{g_{R}}{r}\right]$ gap numbers, and for any gap number $j \leq\left[\frac{2 g_{R}-2}{r}\right]+1$. If $\mathcal{F}^{\prime}=\mathcal{F} \mathcal{K}^{\prime}$ is a constant field extension of degree r, then P splits completely in $\mathcal{F}^{\prime} / \mathcal{F}$. Hence, there are r distinct places $P_{1}, P_{2}, \ldots, P_{r}$ of degree one lying over the place P. By Lemma $4, R_{n}^{\prime}=\mathcal{K}^{\prime}+Q^{\prime n}$ is a local subring of \mathcal{F}^{\prime} and an extension of $R_{n}, C^{\prime}=n Q^{\prime}$ and $\operatorname{Con}_{\mathcal{F}^{\prime} / \mathcal{F}}(i P)=$ $\sum_{t=1}^{r} i P_{t}$. We can easily see that $i \in G_{n}(P)$ if and only if

$$
\operatorname{dim}_{\mathcal{K}} \mathcal{L}(i P)-\operatorname{dim}_{\mathcal{K}} \mathcal{L}((i-1) P)=\operatorname{dim}_{\mathcal{K}^{\prime}} \mathcal{L}\left(\sum_{t=1}^{r} i P_{t}\right)-\operatorname{dim}_{\mathcal{K}^{\prime}} \mathcal{L}\left(\sum_{t=1}^{r}(i-1) P_{t}\right)
$$

Moreover, we have $\mathcal{L}\left(\sum_{t=1}^{r} i P_{t}\right)=\mathcal{K}^{\prime}+L\left(\sum_{t=1}^{r} i P_{t}-n Q^{\prime}\right)$ and $L\left(\sum_{t=1}^{r} i P_{t}-\right.$ $\left.n Q^{\prime}\right)=L\left(\sum_{t=1}^{r}(i-1) P_{t}-n Q^{\prime}\right)$. On the other hand, if $i \in G(P)$, then $i \in G_{n}(P)$. Now, we take $i \in H(P)$. It is easy to see that $i \in H(P)$ if and only if $(i, i, \ldots, i) \in H\left(P_{1}, \ldots, P_{r}\right)$, i.e., $(i, i, \ldots, i, 0) \in \widehat{H}\left(P_{1}, \ldots, P_{r}, Q^{\prime}\right)$. If $(i, \ldots, i,-n) \in \widehat{G}\left(P_{1}, \ldots, P_{r}, Q^{\prime}\right)$ and $\sigma_{r+1}(i, \ldots, i)>-n$, using similar idea which can be seen in the proof of Lemma 3, we have $L\left(\sum_{t=1}^{r} i P_{t}-n Q^{\prime}\right)=$ $L\left(\sum_{t=1}^{r}(i-1) P_{t}-n Q^{\prime}\right)$.

Corollary 6. (a) $\#\left\{j \in H(P): \sigma_{2}(j)>-n\right\}=n-1$.
(b) If $P \in P_{R_{n}}$ is a rational and Weierstrass point of \mathcal{F}, then P is also Weierstrass point of R_{n}.
(c) Let $R_{n}=\mathcal{K}+Q^{n}$ be a local subring of \mathcal{F} over a finite field $\mathcal{K}, \operatorname{deg} Q=1$ and $n \geq 2$, $\# \mathcal{K}>2$. If $n>m$ and j is a gap number of R_{m} at a point P of $\operatorname{deg} P=1$, then j is also gap number of R_{n} at P.
Proof. Using the fact that the number of gaps of R_{n} is $g_{R}=g+\delta=g+n-1$ and Theorem 5, we have (a). We get (b) from the definition of Weierstrass point and Theorem 5. If $n>m$ and $\sigma_{2}(j)>-m$, then $\sigma_{2}(j)>-n$. Hence, (c) is clear by Theorem 5 .

Definition 7. Let $(a, b) \in \widehat{G}(P, Q)$. If $\operatorname{dim} L(a P+b Q)=\operatorname{dim} L(a P+(b-1) Q)=$ $\operatorname{dim} L((a-1) P+b Q)$, then (a, b) is called a pure gap. The set of pure gaps is denoted by $\widehat{G}_{0}(P, Q)$, and the pure gaps set in $\widetilde{G}(P, Q)$ is denoted by $\widetilde{G}_{0}(P, Q)$.

Lemma 8. $(a, b) \in \widetilde{G}_{0}(P, Q)$ if and only if $(k, b),(a, t) \in \widetilde{G}(P, Q)$ for all $k \leq a$ and $t \leq b$.
Proof. Let $(a, b) \in \widehat{G}(P, Q)$. If $\operatorname{dim} L(a P+b Q)=\operatorname{dim} L((a-1) P+b Q)+1$, then there exists j such that $j \leq a,(j, b) \in \widehat{H}(P, Q)$. In this case $\left(a, b^{\prime}\right) \in \widehat{H}(P, Q)$ for $b^{\prime} \leq b$, then $(a, b) \in \overline{\widehat{H}}(P, Q)$, but this is a contradiction. Similarly, we obtain $\operatorname{dim} L(a P+b Q) \neq \operatorname{dim} L(a P+(b-1) Q)+1$. Hence we have lemma.

Now we denote $\Gamma:=\left\{\left(a, \sigma_{2}(a)\right): 0 \leq a \leq 2 g+n-1\right\}$ and we use natural partial order defined as

$$
\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right) \Longleftrightarrow a_{1} \leq a_{2}, b_{1} \leq b_{2}
$$

and for any pair (a, b) define

$$
\Gamma_{(a, b)}=\left\{\left(a^{\prime}, b^{\prime}\right) \in \Gamma: a^{\prime} \leq a, b^{\prime} \leq b\right\}
$$

Lemma 9. $\# \Gamma_{\left(a, \sigma_{2}(a)\right)}=\operatorname{dim} L\left(a P+\sigma_{2}(a) Q\right)$.
Proof. Since $\left(a, \sigma_{2}(a)\right) \in \widehat{H}(P, Q)$, we have $\operatorname{dim} L\left((a-1) P+\sigma_{2}(a) Q\right)+1=$ $\operatorname{dim} L\left(a P+\sigma_{2}(a) Q\right)$. Then $\left(j, \sigma_{2}(a)\right) \in \widehat{H}(P, Q)$ for some $j \leq a$. Since $\left(j, \sigma_{2}(j)\right) \in \widehat{H}(P, Q)$, we get $\sigma_{2}(j)<\sigma_{2}(a)$. Hence, $\left(j, \sigma_{2}(j)\right) \in \Gamma_{\left(a, \sigma_{2}(a)\right)}$ and we have lemma.

Now, we can calculate the number of gaps at the fundamental period via $\widetilde{G}_{0}(P, Q)$.
Theorem 10. Denote by m the period of the semigroup $\widehat{H}(P, Q)$. The number of gaps of the semigroup $\widetilde{H}(P, Q)$ is given by

$$
\# \widetilde{G}(P, Q)=\# \widetilde{G}_{0}(P, Q)+2 \sum_{n=2}^{m+1} \operatorname{dim} \widetilde{\mathcal{L}}\left(\sigma_{2}^{-1}(-n) P\right)
$$

Proof. Let take $-n=\sigma_{2}(i)$ and $i \in H(P)$. In this case we have

$$
\operatorname{dim} L\left(i P+\sigma_{2}(i) Q\right)=\#\left\{\left(j, \sigma_{2}(j)\right):\left(j, \sigma_{2}(j)\right) \leq\left(i, \sigma_{2}(i)\right)\right\}
$$

by Lemma 9 . It is easy to see that
$i-1=(n-1)+\#\left\{j \in G_{n}(P): n \leq j<i\right\}+\#\left\{\left(j, \sigma_{2}(j)\right):\left(j, \sigma_{2}(j)\right)<(i,-n)\right\}$
therefore,

$$
i-1=(n-1)+\#\left\{j \in G_{n}(P): n \leq j<i\right\}+\operatorname{dim} L\left(i P+\sigma_{2}(i) Q\right)-1
$$

and using Riemann-Roch-Rosenlicht theorem, we have

$$
\begin{gathered}
\#\left\{j \in G_{n}(P): n \leq j<\sigma_{2}^{-1}(-n)\right\}=g-\operatorname{dim} \widetilde{\mathcal{L}}\left(\sigma_{2}^{-1}(-n) P\right), \\
\sum_{n=2}^{m+1} \#\left\{j \in G_{n}(P): n \leq j<\sigma_{2}^{-1}(-n)\right\}=m g-\sum_{n=2}^{m+1} \operatorname{dim} \widetilde{\mathcal{L}}\left(\sigma_{2}^{-1}(-n) P\right) .
\end{gathered}
$$

Hence

$$
m g=\# \text { Pure Gaps }+\sum_{n=2}^{m+1} \operatorname{dim} \widetilde{\mathcal{L}}\left(\sigma_{2}^{-1}(-n) P\right)
$$

On the other hand,

$$
\left.\#\left\{j>\sigma_{2}^{-1}(-n) \mid \sigma_{2}(j)>-n\right)\right\}=g+n-i+\operatorname{dim} L\left(\sigma_{2}^{-1}(-n) P-n Q\right)-1
$$

and

$$
\left.\sum_{n=2}^{m+1} \#\left\{j>\sigma_{2}^{-1}(-n) \mid \sigma_{2}(j)>-n\right)\right\}=\sum_{n=2}^{m+1} \operatorname{dim} \widetilde{\mathcal{L}}\left(\sigma_{2}^{-1}(-n) P\right)
$$

From Theorem 18 in [1], we obtain

$$
\# \widetilde{G}(P, Q)=\# \text { Pure Gaps }+2 \sum_{n=2}^{m+1} \operatorname{dim} \widetilde{\mathcal{L}}\left(\sigma_{2}^{-1}(-n) P\right)
$$

Example 1. Let $\mathcal{F}=\mathcal{K}(\mathrm{x}, \mathrm{y})$ be a function field given by $y^{2}=x^{3}-x$, where \mathcal{K} is a finite field, char $\mathcal{K}=5$. Then $(x)=2 P-2 Q$. Now we consider the subring $R_{2}=\mathcal{K}+Q^{2}$. Since 2 is period for the semigroup $\widehat{H}(P, Q), 1$ and 3 are gap numbers of R_{2} at P.

Example 2. Let q be a prime power and m a positive integer $(m, q)=1$. Now, we will investigate the algebraic function field \mathcal{C}_{m} defined over $\mathbb{F}_{q^{2}}$ by the equation $y^{q}+y=x^{m}$. If $m=q+1, C_{m}$ is the Hermitian function field [2]. Let $P=P_{00}$ and $Q=P_{\infty}$, where P_{∞} denotes the point at infinity and $P_{a b}$ denotes the common zero of $x-a$ and $y-b$. The divisors of x and y are given by

$$
(x)=\sum_{\beta^{q}+\beta=0} P_{0 \beta}-q P_{\infty} \quad \text { and } \quad(y)=m\left(P_{00}-P_{\infty}\right)
$$

In fact m is the period of the semigroup $\widehat{H}(P, Q)$. We have $\sigma_{2}(i)=-i q$ for $-m<i \leq 0$, and $\sigma_{2}(-i \cdot m)=i \cdot m, \sigma_{2}(-1-i m)=q+i m$ for any $i \in \mathbb{Z}$.
Theorem 11. Let \mathcal{C}_{m} be the algebraic function field over $\mathbb{F}_{q^{2}}$ given by the equation $y^{q}+y=x^{m}$. We denote by P the zero of y and by Q the pole of y. Let $R_{n}=\mathbb{F}_{q^{2}}+Q^{n}$ be a local subring of \mathcal{C}_{m}, where $n \geq 2$, and $m=q+1$ or $m \mid q+1$. Then the set of gap numbers of R_{n} at P is one of the following sets
(i) $\{a q: 0<a<n=\alpha\} \cup G(P)$.
(ii) $\left\{1,2, \ldots, n-1, j+n ; j \in G_{\alpha}(P), n=m \beta+\alpha, 0 \leq \alpha<m\right\}$.

Proof. Now, we give a proof for $m=q+1$, the other case can be proven similarly. Let $R_{n}=\mathbb{F}_{q^{2}}+Q^{n}$ be a local subring of $\mathcal{C}_{q+1}, n \geq 2$. If $j \in G(P)$, then $j \in G_{n}(P)$. If $j \in H(P)$ and $j \leq 2 g+n-1$, then $j=a q+b m$, where a, b are non-negative integers and $\sigma_{2}(j)=-(a+b m)$.
case 1. If $n=\alpha<m$, then $\sigma_{2}(j)=-a<\alpha$ and $j=a q \in G_{n}(P)$.
case 2. If $n=\alpha+m \beta$ and $\alpha<m$, then $\sigma_{2}^{-1}(-n)=\alpha q+m \beta$. Using periodicity, we have $(j,-n)=(a q+m b,-(\beta m+\alpha))=(a q+m(b-\beta),-\alpha)$. If $(a q+m(b-\beta),-\alpha) \in \widehat{G}(P, Q)$, then $(j,-n) \in \widehat{G}(P, Q)$ and $j \in G_{n}(P)$. Hence, we have $G_{n}(P)=\left\{1,2, \ldots, n-1, j+n ; j \in G_{\alpha}(P)\right\}$.
case 3. Let $n=\beta m$. If j is a gap number of the \mathcal{C}_{q+1}, then $j+\beta m \in G_{n}(P)$. On the other hand, $(\beta m,-\beta m)$ is always in $\widehat{H}(P, Q)$. Hence,

$$
\{1,2, \ldots, m \beta-1, j+m \beta ; j \in G(P)\}
$$

is gap set of $R_{\beta m}=\mathbb{F}_{q^{2}}+Q^{\beta m}$ at P.
It is well known that any rational point of Hermitian curve is also a Weierstrass point. By Corollary 6 , one sees that if $P \in P_{R_{n}}$ is a rational point, then P is a Weierstrass point of R_{n}. Now, we consider the curve $y^{4}+y=x^{5}$ over the finite field with 16 elements. Let $R_{4}=\mathcal{K}+Q^{4}$, where Q is the point at infinity, and let take $(w)=\left(x y^{2} d x\right),(d x)=10 Q$. Consider divisor $W_{R}:=\left(W_{x}\right)+\left(\sum_{i=1}^{g_{R}} \epsilon_{i}\right)(d x)+g_{R}(w)=\left(\left(x y^{2}\right)^{9}\left(x^{16}+x\right)^{4}\right)+390 Q+9\left(x y^{2} d x\right)$, where W_{x} is the Wronskian determinant. Any point $P \in P_{R}$ is a Weierstrass points of R if and only if $v_{P}\left(W_{R}\right)>0$. Therefore, Weierstrass points of the local subring $R_{4}=\mathcal{K}+Q^{4}$ are exactly rational points of the curve different from Q.

Here we consider subring $R_{n_{1}, n_{2}}=\mathcal{K}+Q_{1}^{n_{1}} Q_{2}^{n_{2}}, n_{1}+n_{2} \geq 2, \operatorname{deg} Q_{k}=1$, $k=1,2$. For any $P \in P_{R}$ of degree one if $i \in G(P)$, then we have $i \in G_{n_{1}, n_{2}}(P)$.

Let define the map $\sigma_{1}\left(-n_{1},-n_{2}\right)=\min \left\{j:\left(j,-n_{1},-n_{2}\right) \in \widehat{H}\left(P, Q_{1}, Q_{2}\right)\right\}$. If $i \in H(P)$ and if there exists a pair (a, b) such that $(a, b)>\left(-n_{1},-n_{2}\right)$ and $\sigma_{1}(a, b)=i>\sigma_{1}\left(-n_{1},-n_{2}\right)$, then $i \in G_{n_{1}, n_{2}}(P)$. Thus the gap set of $R_{n_{1}, n_{2}}$ is $G(P) \cup\left\{i \in H(P):(a, b)>\left(-n_{1},-n_{2}\right), \sigma_{1}(a, b)=i>\sigma_{1}\left(-n_{1},-n_{2}\right)\right\}$. Now, we take the Hermitian curve C_{5} and the local subring $R_{1,1}=F_{q^{2}}+Q_{1} Q_{2}$ and points $Q_{1}=P_{00}, Q_{2}=P_{0 b}$, where $b^{q}+b=0$. Let $P=P_{\infty}, \sigma_{1}(-1,-1)=4$, $(4,-1,-1) \in \widehat{H}\left(P, Q_{1}, Q_{2}\right)$. Since $5 \in H(P)$, we have $(5,-1,0),(5,0,-1)$, $(5,0,0),(5,-5,0),(5,0,-5) \in \widehat{H}\left(P, Q_{1}, Q_{2}\right)$. Hence, 5 is a gap number of $R_{1,1}$ at P. Similarly, $G_{1,1}(P)=\{1,2,3,5,6,7,11\}$. For another example, we take the subring $R_{3,2}=F_{q^{2}}+Q_{1}^{3} Q_{2}^{2}$. Then $\sigma_{1}(-3,-2)=12,(12,-3,-2) \in$ $\widehat{H}\left(P, Q_{1}, Q_{2}\right)$, and $G_{3,2}(P)=\{1,2,3, \ldots, 11\}$.
Corollary 12. The number of pure gaps of \mathcal{C}_{m} in the fundamental region is given by
(a) $\# \widetilde{G}_{0}(P, Q)=\frac{1}{3} q\left(q^{2}-1\right)$, where $m=q+1$
(b) $\# \widetilde{G}_{0}(P, Q)=\frac{1}{6}(m-1)(2 m q-q-m-1)$, where $m \mid q+1$.

Proof. It follows from Theorem 10 and the following formulas

$$
\begin{aligned}
& \# \widetilde{G}(P, Q)=(m+1) g+\binom{q}{3}, m=q+1 \\
& \# \widetilde{G}(P, Q)=(m+1) g+\frac{1}{6}(m-2)(m-1)(q-2), m \mid q+1
\end{aligned}
$$

which are given in [1].
For an example, the curve $y^{11}+y=x^{4}$ has 36 pure gap numbers.
Example 3. The Suzuki curve over the field \mathbb{F}_{q} is defined by the equation $y^{q}-y=x^{q_{0}}\left(x^{q}-x\right)$, where $q_{0}=2^{s}, q=2^{2 s+1}$ and s is a positive integer. We denote by $P=P_{00}$ the zero of both x and y and by $O=P_{\infty}$ the pole of x. It is also known that the divisor $\left(q+2 q_{0}+1\right)\left(P_{00}-P_{\infty}\right)$ is principal (see [9]). Here, $m:=q+2 q_{0}+1$ and $H\left(P_{\infty}\right)=\left\langle q, q+q_{0}, q+2 q_{0}, q+2 q_{0}+1\right\rangle$. One easily sees that $\sigma_{2}(q)=-1, \sigma_{2}\left(q+q_{0}\right)=-1-q_{0}, \sigma_{2}\left(q+2 q_{0}\right)=-1-2 q_{0}$, and $\sigma_{2}(m)=-m$. This determines the involution σ_{2} completely. For $j \in H(P)$ and $j=a q+b\left(q+q_{0}\right)+c\left(q+2 q_{0}\right)+d\left(q+2 q_{0}+1\right)$, then we have $\sigma_{2}(j)=$ $-\left(a+b\left(1+q_{0}\right)+c\left(1+2 q_{0}\right)+d\left(q+2 q_{0}+1\right)\right)$. If $n<m$,

$$
n=\left(1+2 q_{0}\right) \alpha+l, 0 \leq l<1+2 q_{0}, \quad l=\beta\left(q_{0}+1\right)+\tau, \quad \tau<q_{0}+1
$$

and we get $\sigma_{2}^{-1}(-n)=\sigma_{1}(-n)=\tau q+\beta\left(q+q_{0}\right)+\alpha\left(q+2 q_{0}\right)$.
Theorem 13. Let \mathcal{F} be the Suzuki function field over \mathbb{F}_{q} and $R_{n}=\mathcal{K}+Q^{n}$ be a local subring of $\mathcal{F}, \operatorname{deg} Q=1$. Assume that $P \in P_{R_{n}}$ of degree one, and $m>n \geq 2$. If $j \in G_{n}(P) \backslash G(P)$ and n is in the form above, then j can be written one of the following forms:
(I) (i) $\tau q+b\left(q+q_{0}\right)+\alpha\left(q+2 q_{0}\right), b \leq \beta$.
(ii) $a+b\left(q+q_{0}\right)+\alpha\left(q+2 q_{0}\right), b \leq \beta, a<q_{0}+1$.
(iii) $a q+b\left(q+q_{0}\right)+\alpha\left(q+2 q_{0}\right), b<\beta, \tau<a<q_{0}+1$.
(II) $c<\alpha, \alpha=c+u$, where u is an integer,
(i) $\tau+b\left(q+q_{0}\right)+c\left(q+2 q_{0}\right), b \leq \beta+u\left[\frac{u q_{0}}{1+q_{0}}\right]$.
(ii) $a+b\left(q+q_{0}\right)+c\left(q+2 q_{0}\right), a<\tau, b \leq \beta+u+\left[\frac{u q_{0}+\tau}{1+q_{0}}\right]$.
(iii) $a+b\left(q+q_{0}\right)+c\left(q+2 q_{0}\right), \tau<a, b \leq \beta+u\left[\frac{u q_{0}}{1+q_{0}}\right]$.

Proof. Let $n<m$. If $j \in H(P)$, then $j=a q+b\left(q+q_{0}\right)+c\left(q+2 q_{0}\right)$. Here we note that $a+b\left(1+q_{0}\right)<1+2 q_{0}$ and if $j=k m$, then j is not a gap number at P. Using Theorem 5, we have the theorem.

If $n=m$, we have $G_{n}(P)=\{1,2, \ldots, m-1, j+m ; j \in G(P)\}$. Generally, if $n=k m+l$ with $0 \leq l<m$, using periodicity we obtain

$$
G_{n}(P)=\left\{1,2, \ldots, n-1, j+n ; j \in G_{l}(P)\right\} .
$$

Lemma 14. For the Suzuki function field defined by $y^{q}-y=x^{q_{0}}\left(x^{q}-x\right)$ over \mathbb{F}_{q}

$$
\# \widetilde{G}_{0}(P, Q)=\frac{1}{15} q_{0}\left(5 q_{0}^{2}-25 q_{0}-40 q_{0}^{3}+46 q_{0}^{6}-6\right)
$$

Proof. It follows from [1] and Theorem 10.
If $q_{0}=2$, the number of pure gaps is 136 for Suzuki curve.
Acknowledgement. Author thanks the Akdeniz University Research Fund for its support of this project.

References

[1] P. Beelen and N. Tutaş, A generalization of the Weierstrass semigroup, J. Pure Appl. Algebra 207 (2006), no. 2, 243-260.
[2] A. Garcia and P. Viana, Weierstrass points on certain nonclassical curves, Arch. Math. (Basel) 46 (1986), no. 4, 315-322.
[3] M. Homma, The Weierstrass semigroup of a pair of points on a curve, Arch. Math. (Basel) 67 (1996), no. 4, 337-348.
[4] E. Kang and S. J. Kim, Special pairs in the generating subset of the Weierstrass semigroup at a pair, Geom. Dedicata 99 (2003), 167-177.
[5] H. I. Karakaş, On Rosenlicht's generalization of Riemann-Roch theorem and generalized Weierstrass points, Arch. Math. (Basel) 27 (1976), no. 2, 134-147.
[6] , Application of generalized Weierstrass points: divisibility of divisor classes, J. Reine Angew. Math. 299/300 (1978), 388-395.
[7] S. J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Arch. Math. (Basel) 62 (1994), no. 1, 73-82.
[8] G. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Des. Codes Cryptogr. 22 (2001), no. 2, 107-121.
[9] , Codes from the Suzuki function field, IEEE Trans. Inform. Theory 50 (2004), no. 12, 3298-3302.
[10] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952), 169-191.
[11] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.
[12] N. Tutaş, On Weierstrass point of semilocal subrings, JP J. Algebra Number Theory Appl. 13 (2009), no. 2, 221-235.

Department of Mathematics
Akdeniz University
07058, Antalya, Turkey
E-mail address: ntutas@akdeniz.edu.tr

[^0]: Received November 27, 2008; Revised June 9, 2009.
 2000 Mathematics Subject Classification. 14H55, 14G50.
 Key words and phrases. Weierstrass points, gap numbers.

