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PERIODIC SOLUTIONS FOR A KIND OF p-LAPLACIAN
HAMILTONIAN SYSTEMS

Li Zhang and Weigao Ge

Abstract. In this paper, the existence of periodic solutions is obtained
for a kind of p-Laplacian systems by the minimax methods in critical
point theory. Moreover, the existence of infinite periodic solutions is also
obtained.

1. Introduction

This paper is concerned with the existence of periodic solutions for the fol-
lowing system

(1.1)





d

dt
(φp(u̇(t))) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where p > 1, φp(u) = |u|p−2u =
(√∑N

i=1 u
2
i

)p−2

· (u1, u2, . . . , uN ), T > 0 and

F : [0, T ]× RN → R satisfies the following assumption:
(A) F (t, u) is measurable in t for each u ∈ RN and continuously differentiable
in u for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such
that

|F (t, u)| ≤ a(|u|)b(t), |∇F (t, u)| ≤ a(|u|)b(t)
for all u ∈ RN and a.e. t ∈ [0, T ].

When p = 2, problem (1.1) becomes the second order Hamiltonian systems

(1.2)

{
ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

Many existence results for (1.2) are obtained by using variational methods,
such as [2, 4, 5, 6, 7] and the references therein. Tang [4] gets some existence
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results of (1.2) when F (t, u) = F1(t, u) + F2(t, u) and
∫ T

0
F (t, u)dt → +∞ as

|u| → ∞, F (t, ·) is subadditive for a.e. t ∈ [0, T ] and there exists g ∈ L1[0, T ]
such that |∇F2(t, u)| ≤ g(t) for all u ∈ RN and a.e. t ∈ [0, T ]. Moreover, by
the least action principle, Wu and Tang [6] obtain some existence results of
(1.2) while F1(t, ·) is (λ, µ)-subconvex and ∇F2(t, u) ≤ f(t)|u|α + g(t) for some
0 ≤ α < 1, f, g ∈ L1(0, T ;R+).

However, while F (t, u) → −∞ as |u| → +∞ uniformly for a.e. t ∈ [0, T ],
we do not know whether the question is a positive answer. Moreover, for the
general case p > 1, some papers calling it vector p-Laplacian, there are not
so many results. Differential equations with p-Laplacian have many important
applications such as non-Newtonian fluid theory and the turbulent flow of the
gas in porous medium. Motivated by the work mentioned above, in this paper,
we consider the existence of periodic solutions for problem (1.1).

2. Preliminary

The Sobolev space W 1,p
T is defined by

W 1,p
T = {u : [0, T ] → RN | u is absolutely continuous, u(0) = u(T ),(2.1)

and u̇ ∈ Lp(0, T ;RN )}

and is endowed with the norm

(2.2) ||u|| =
(∫ T

0

|u(t)|pdt+
∫ T

0

|u̇(t)|pdt
) 1

p

.

It follows from [2] that W 1,p
T is a reflexive Banach space. Moreover, W 1,p

T

is a closed subspace of W 1,p
T under (2.2). From [1, Theorem 1.21] and [1,

Theorem 3.5], we obtain W 1,p
T is uniformly convex.

Define a functional ϕ on W 1,p
T by

(2.3) ϕ(u) =
1
p

∫ T

0

|u̇(t)|pdt+
∫ T

0

F (t, u(t))dt, u ∈W 1,p
T .

It follows from assumption (A) that the functional ϕ is continuously differen-
tiable on W 1,p

T . Moreover,

(2.4) 〈ϕ′(u), v〉 =
∫ T

0

[(|u̇(t)|p−2u̇(t), v̇(t)) + (∇F (t, u(t)), v(t))]dt

for all u, v ∈ W 1,p
T . It is well known that the solutions of problem (1.1) corre-

spond to the critical points of ϕ.
The following lemmas are basic in our paper.
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Lemma 2.1 ([2]). Set ||u||∞ = max
t∈[0,T ]

|u(t)|, ||u||Lp = (
∫ T

0
|u(t)|pdt) 1

p . If

u ∈W 1,p
T and

∫ T

0
u(t)dt = 0, then

(2.5) ||u||∞ ≤ T
1
q ||u̇||Lp ,

(
1
p

+
1
q

= 1
)
.

Moreover, we have

(2.6) ||u||Lp ≤ T ||u̇||Lp .

Lemma 2.2 ([5]). Suppose F (t, u) satisfies the assumption (A) and E is a
measurable subset of [0, T ]. Assume

F (t, u) → −∞, |u| → ∞
for a.e. t ∈ E. Then, for every δ > 0, there exists a subset Eδ of E with
meas(E \ Eδ) < δ such that

F (t, u) → −∞, |u| → ∞
uniformly for all t ∈ Eδ.

Theorem 2.1 ([2, The Saddle Point Theorem]). Let X be a Banach space and
let ϕ ∈ C1(X,R). Assume that X splits into a direct sum of closed subspaces
X = X− ⊕X+ with

dimX− <∞
and

sup
S−R

ϕ < inf
X+

ϕ,

where S−R = {u ∈ X− : |u| = R}. Let

B−R = {u ∈ X− : |u| ≤ R},

M = {g ∈ C(B−R , X) : g(s) = s if s ∈ S−R}
and

c = inf
g∈M

max
s∈B−R

ϕ(g(s)).

Then if ϕ satisfies the (PS)c-condition, c is a critical value of ϕ.

Theorem 2.2 ([3]). Assume E is a real Banach space, I ∈ C1(E,R) is an even
functional satisfying PS-condition and I(0) = 0. If E = V ⊕ X, dimV < ∞
and I satisfies

(A1) there exist constants ρ, α > 0 such that I |∂Bρ∩X≥ α;
(A2) for ∀ V1 ⊂ E with dimV1 <∞, the set {x ∈ V1 : I(x) ≥ 0} is bounded,

then I has an unbounded critical value sequence.
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3. Main results

Suppose F (t, u) = G(u) +H(t, u) and
(B1) there exist f, g ∈ L1(0, T ;R+) such that

|∇H(t, u)| ≤ f(t)|u|α + g(t)

holds for all u ∈ RN and a.e. t ∈ [0, T ]. Here α satisfies

0 ≤ α < 1, if p ≥ q and 0 ≤ α <
p

q
, if p < q;

(B2) there exists a constant r < 1−T
p
q

T p such that

(∇G(u)−∇G(v), u− v) ≥ −r|u− v|p, u, v ∈ RN ;

(B3) there exists a subset E of [0, T ] with meas(E) > 0 such that

|u|−max{p,q}αF (t, u) → −∞ as |u| → ∞
for a.e. t ∈ E;

(B4) there exist c(t) ∈ L1(0, T ;R+), d(t) ∈ L1(0, T ), γ ≥ 0 such that

F (t, u) ≤ c(t)|u|−γ + d(t)

for u ∈ RN , u 6= θ, and a.e. t ∈ [0, T ].
In the following, for u ∈W 1,p

T , let ū = 1
T

∫ T

0
u(t)dt and ũ = u− ū.

Lemma 3.1. Suppose F (t, u) satisfy (A) and (B1)-(B4). Then ϕ satisfies
the PS-condition, that is, (un)n∈N has a convergent subsequence whenever it
satisfies ϕ′(un) → 0 as n→∞ and ϕ(un) is bounded.

Proof. By (2.6), we have
(∫ T

0

|u̇(t)|pdt
) 1

p

=

(∫ T

0

| ˙̃u(t)|pdt
) 1

p

≤ ||ũ||(3.1)

=

(∫ T

0

|ũ(t)|pdt+
∫ T

0

| ˙̃u(t)|pdt
) 1

p

≤ ||ũ||Lp + || ˙̃u||Lp ≤ (T + 1)|| ˙̃u||Lp .

By (B2) and (2.6), we obtain
∫ T

0

(∇G(u(t)), ũ(t))dt =
∫ T

0

(∇G(u(t))−∇G(ū(t)), ũ(t))dt

=
∫ T

0

(∇G(u(t))−∇G(ū(t)), u(t)− ū(t))dt

≥ −r
∫ T

0

|u− ū|pdt

= −r||ũ||pLp ≥ −rT p||u̇||pLp , ∀u ∈W 1,p
T .
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Suppose (un)n∈N is a sequence satisfying ϕ′(un) → 0 as n → ∞ and ϕ(un)
is bounded. In order to prove

(3.2) |un(t)| ≥ C0|ūn| − C ′0, ∀t ∈ [0, T ]

holds for some positive constants C0, C ′0, there are two cases.
Case 1. p ≥ q.
From (B1) and (2.5),

∣∣∣∣∣
∫ T

0

(∇H(t, u(t)), ũ(t))dt

∣∣∣∣∣

(3.3)

≤
∫ T

0

f(t)|u(t)|α|ũ(t)|dt+
∫ T

0

g(t)|ũ(t)|dt

≤ (|ū|α + ||ũ(t)||α∞)||ũ(t)||∞
∫ T

0

f(t)dt+ ||ũ(t)||∞
∫ T

0

g(t)dt

= |ū|α||ũ(t)||∞
∫ T

0

f(t)dt+ ||ũ(t)||α+1
∞

∫ T

0

f(t)dt+ ||ũ(t)||∞
∫ T

0

g(t)dt

≤ ||ũ(t)||q∞ + |ū|pα

(∫ T

0

f(t)dt

)p

+||ũ(t)||α+1
∞

∫ T

0

f(t)dt+ ||ũ(t)||∞
∫ T

0

g(t)dt

≤ T ||u̇||qLp + C1|ū|pα + C2||u̇||α+1
Lp + C3||u̇||Lp

holds for all u ∈ W 1,p
T and some positive constants C1, C2 and C3. Hence, for

large n, one has

||ũn|| ≥ |〈ϕ′(un), ũn〉| =
∣∣∣∣∣
∫ T

0

|u̇n(t)|pdt+
∫ T

0

(∇F (t, un(t)), ũn(t))dt

∣∣∣∣∣

(3.4)

=

∣∣∣∣∣
∫ T

0

|u̇n(t)|pdt+
∫ T

0

(∇G(un(t)), ũn(t))dt+
∫ T

0

(∇H(t, un(t)), ũn(t))dt

∣∣∣∣∣
≥ ||u̇n||pLp− rT p||u̇n||pLp− T ||u̇n||qLp−C1|ūn|pα−C2||u̇n||α+1

Lp −C3||u̇n||Lp .

Then, by (3.1) and (3.4)

C1|ūn|pα ≥ (1− rT p)||u̇n||pLp − T ||u̇n||qLp −C2||u̇n||α+1
Lp − (1 + T +C3)||u̇n||Lp .

Obviously, p ≥ 2 and α < 1. Moreover, from (B2) one has 1 − rT p > 0 for
p > q, and 1− rT p − T > 0 for p = q. Hence,

(3.5) C4|ūn|α ≥ ||u̇n||Lp − C5

holds for some constants C4, C5 and large n. This implies that

(3.6) ||ũn||∞ ≤ C6(|ūn|α + 1)
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for some constants C6 6= 1 and large n. Then one has

|un(t)| ≥ |ūn| − |ũn(t)| ≥ |ūn| − ||ũn(t)||∞
≥ |ūn| − C6(|ūn|α + 1)(3.7)

= |ūn|[1− C6(|ūn|α−1 + |ūn|−1)]

for large n and t ∈ [0, T ]. If (|ūn|)n∈N is bounded, we can easily obtain (3.2). If
(|ūn|)n∈N is unbounded, without loss of generality, we may suppose |ūn| → ∞ as
n→∞, then, for sufficiently small ε > 0 and large n, |ūn|α−1 < ε, |ūn|−1 < ε.
Hence, (3.2) holds.

Case 2. p < q.
Similarly, we have
∣∣∣∣∣
∫ T

0

(∇H(t, u(t)), ũ(t))dt

∣∣∣∣∣

≤
∫ T

0

f(t)|u(t)|α|ũ(t)|dt+
∫ T

0

g(t)|ũ(t)|dt

≤ ||ũ(t)||p∞ + |ū|qα

(∫ T

0

f(t)dt

)q

+ ||ũ(t)||α+1
∞

∫ T

0

f(t)dt+ ||ũ(t)||∞
∫ T

0

g(t)dt

≤ T
p
q ||u̇||pLp + C ′1|ū|qα + C2||u̇||α+1

Lp + C3||u̇||Lp

holds for all u ∈ W 1,p
T and some positive constant C ′1. Hence, for large n, one

has

||ũn|| ≥ |〈ϕ′(un), ũn〉|
≥ (1− rT p − T

p
q )||u̇n||pLp − C ′1|ūn|qα − C2||u̇n||α+1

Lp − C3||u̇n||Lp .

Then,

C ′1|ūn|qα ≥ (1− rT p − T
p
q )||u̇n||pLp − C2||u̇n||α+1

Lp − (1 + T + C3)||u̇n||Lp

= ||u̇n||pLp [(1− rT p − T
p
q )− C2||u̇n||α+1−p

Lp − (1 + T + C3)||u̇n||1−p
Lp ].

From (B1), (B2), one has α + 1 < p
q + 1 = p and 1 − rT p − T

p
q > 0. Hence,

with the similar discussion above,

(3.8) C ′4|ūn|qα ≥ ||u̇n||pLp − C ′5

holds for some constants C ′4, C
′
5 and large n, that is,

(3.9) ||ũn||
p
q∞ ≤ C ′6(|ūn|α + 1)

for some constants C ′6 6= 1 and large n. Then,

(3.10) |un(t)| p
q ≥ |ūn|

p
q − ||ũn(t)||

p
q∞ ≥ |ūn|

p
q − C ′6(|ūn|α + 1)

for large n and t ∈ [0, T ].
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Then from (3.7) and (3.10), whenever p ≥ q or p < q, (3.2) holds for some
constants C0, C ′0 and large n. If (|ūn|)n∈N is unbounded, we may assume that,
going to a subsequence if necessary,

(3.11) |ūn| → ∞ as n→∞.

Set δ = m(E)
2 . It follows from Lemma 2.2 and (B3) that there exists a subset

Eδ of E with meas(E \ Eδ) < δ such that

|u|−max{p,q}αF (t, u) → −∞ as |u| → ∞
uniformly for all t ∈ Eδ, which implies that

m(Eδ) = m(E)−m(E \ Eδ) > δ > 0.

Moreover, for every N > 0, there exists M ≥ 1 such that

|u|−max{p,q}αF (t, u) ≤ −N
for all |u| ≥M and t ∈ Eδ. By (3.2) and (3.11), one has

|un(t)| ≥M

for large n and every t ∈ [0, T ]. Then

ϕ(un) =
1
p

∫ T

0

|u̇n(t)|pdt+
∫ T

0

F (t, un(t))dt

=
1
p
||u̇n(t)||pLp +

∫

Eδ

F (t, un(t))dt+
∫

[0,T ]\Eδ

F (t, un(t))dt

≤ 1
p
||u̇n(t)||pLp −N

∫

Eδ

|un(t)|max{p,q}αdt+
∫

[0,T ]\Eδ

c(t)|un|−γdt

+
∫

[0,T ]\Eδ

d(t)dt

≤ 1
p
||u̇n(t)||pLp − 2−max{p,q}αNδCmax{p,q}α

0 |ūn|max{p,q}α

+NδC
′max{p,q}α
0 +M−γ

∫

[0,T ]\Eδ

c(t)dt+
∫

[0,T ]\Eδ

d(t)dt

≤





1
p (C4|ūn|α + C5)p − (2−pαCpα

0 |ūn|pα − C ′pα
0 )Nδ

+M−γ
∫
[0,T ]\Eδ

c(t)dt+
∫
[0,T ]\Eδ

d(t)dt, if p ≥ q,

1
p (C ′4|ūn|qα + C ′5)− (2−qαCqα

0 |ūn|qα − C ′qα
0 )Nδ

+M−γ
∫
[0,T ]\Eδ

c(t)dt+
∫
[0,T ]\Eδ

d(t)dt, if p < q

(3.12)

for large n. Hence, we have

lim sup
n→∞

|ūn|−max{p,q}αϕ(un) ≤ −2−max{p,q}αCmax{p,q}α
0 δN +

1
p

max{Cp
4 , C

′p
4 }.

By the arbitrariness of N > 0, one has

(3.13) lim sup
n→∞

|ūn|−max{p,q}αϕ(un) = −∞
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which contradicts with the boundedness of ϕ(un). Therefore, (|ūn|)n∈N is
bounded. Furthermore, by (3.5), (3.8), and

||un|| ≤ ||ūn||+ (T + 1)|| ˙̃un||Lp ,

one has (un)n∈N is bounded in W 1,p
T . Going if necessary to a subsequence, we

can assume that un ⇀ u in W 1,p
T and un → u in C([0, T ], RN ). Hence,

〈ϕ′(un), un − u〉
(3.14)

=
∫ T

0

[(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇(t)) + (∇F (t, un(t)), un(t)− u(t))]dt→ 0

as n→∞,

and (un)n∈N is bounded in C([0, T ], RN ). Therefore

(3.15)
∫ T

0

(|un|p−2un, un − u)dt→ 0 as n→∞.

By assumption (A),∣∣∣∣∣
∫ T

0

(∇F (t, un(t)), un(t)− u(t))dt

∣∣∣∣∣ ≤
∫ T

0

|∇F (t, un(t))| · |un(t)− u(t)|dt

≤ C7||b||L1 ||un − u||∞
holds for some positive constant C7. Then

(3.16)
∫ T

0

(∇F (t, un(t)), un(t)− u(t))dt→ 0 as n→∞.

From (3.14) and (3.16), we obtain

(3.17)
∫ T

0

(|u̇n(t)|p−2u̇n(t), u̇n(t)− u̇(t))dt→ 0 as n→∞.

Set ψ(u) = 1
p ||u||p = 1

p (
∫ T

0
|u|pdt+∫ T

0
|u̇|pdt). By (3.15) and (3.17), we have

〈ψ′(un), un − u〉
(3.18)

=
∫ T

0

(|un|p−2un, un − u)dt+
∫ T

0

(|u̇n|p−2u̇n, u̇n − u̇)dt→ 0 as n→∞.

Using the Hölder’s inequality, we have

〈ψ′(un)− ψ′(u), un − u〉

(3.19)

=
∫ T

0

(|un|p−2un, un − u)dt+
∫ T

0

(|u̇n|p−2u̇n, u̇n − u̇)dt
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−
∫ T

0

(|u|p−2u, un − u)dt−
∫ T

0

(|u̇|p−2u̇, u̇n − u̇)dt

≥
∫ T

0

|un|pdt+
∫ T

0

|u̇n|pdt+
∫ T

0

|u|pdt+
∫ T

0

|u̇|pdt

−
(∫ T

0

|un|pdt
) 1

q
(∫ T

0

|u|pdt
) 1

p

−
(∫ T

0

|u̇n|pdt
) 1

q
(∫ T

0

|u̇|pdt
) 1

p

−
(∫ T

0

|u|pdt
) 1

q
(∫ T

0

|un|pdt
) 1

p

−
(∫ T

0

|u̇|pdt
) 1

q
(∫ T

0

|u̇n|pdt
) 1

p

≥ ||un||p + ||u||p −
[∫ T

0

|un|pdt+
∫ T

0

|u̇n|pdt
] 1

q

·
[∫ T

0

|u|pdt+
∫ T

0

|u̇|pdt
] 1

p

−
[∫ T

0

|un|pdt+
∫ T

0

|u̇n|pdt
] 1

p

·
[∫ T

0

|u|pdt+
∫ T

0

|u̇|pdt
] 1

q

= (||un||p−1 − ||u||p−1)(||un|| − ||u||) ≥ 0.

From (3.18) and (3.19), one has ||un|| → ||u||. Then, un → u holds in W 1,p
T by

the uniform convexity of W 1,p
T . Therefore, the PS-condition holds. ¤

Theorem 3.1. Assume F (t, u) satisfy (A) and (B1)-(B4). Then problem (1.1)
has at least one solution in W 1,p

T .

Proof. It remains to show that ϕ satisfies other conditions of the Saddle Point
Theorem. Let W̃ 1,p

T be the subspace of W 1,p
T given by

W̃ 1,p
T = {u ∈W 1,p

T |ū = 0}.
Then W 1,p

T = RN ⊕ W̃ 1,p
T . By (2.5), one obtains∣∣∣∣∣

∫ T

0

[H(t, u(t))−H(t, 0)]dt

∣∣∣∣∣

=

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇H(t, su(t)), u(t))dsdt

∣∣∣∣∣

≤
∫ T

0

∫ 1

0

f(t)|su(t)|α|u(t)|dsdt+
∫ T

0

∫ 1

0

g(t)|u(t)|dsdt

≤
∫ T

0

f(t)|u(t)|α+1dt+
∫ T

0

g(t)|u(t)|dt

≤ ||u(t)||α+1
∞

∫ T

0

f(t)dt+ ||u(t)||∞
∫ T

0

g(t)dt

≤ T
α+1

q ||u̇(t)||α+1
Lp

∫ T

0

f(t)dt+ T
1
q ||u̇(t)||Lp

∫ T

0

g(t)dt



364 LI ZHANG AND WEIGAO GE

= C8||u̇(t)||α+1
Lp + C9||u̇(t)||Lp

for all u ∈ W̃ 1,p
T and some positive constants C8 and C9. Moreover,

∫ T

0

[G(u(t))−G(0)]dt =
∫ T

0

∫ 1

0

(∇G(su(t)), u(t))dsdt

=
∫ T

0

∫ 1

0

(∇G(su(t))−∇G(0), u(t))dsdt

=
∫ T

0

∫ 1

0

1
s
(∇G(su(t))−∇G(0), su(t))dsdt

≥
∫ T

0

∫ 1

0

1
s
(−r|su(t)|p)dsdt

= −r
∫ T

0

∫ 1

0

sp−1|u(t)|pdsdt

= −r
p
||u||pLp

for all u ∈ W̃ 1,p
T . Hence

ϕ(u)−
∫ T

0

F (t, 0)dt =
1
p

∫ T

0

|u̇(t)|pdt+
∫ T

0

[F (t, u(t))− F (t, 0)]dt(3.20)

=
1
p

∫ T

0

|u̇(t)|pdt+
∫ T

0

[G(u(t))−G(0)]dt

+
∫ T

0

[H(t, u(t))−H(t, 0)]dt

≥ 1
p
||u̇||pLp − r

p
||u||pLp − C8||u̇||α+1

Lp − C9||u̇||Lp

≥ 1− rT p

p
||u̇||pLp − C8||u̇||α+1

Lp − C9||u̇||Lp .

Let ||u|| → ∞ in W̃ 1,p
T . Then ||u̇||Lp →∞ or ||u||Lp →∞. From (2.6), one has

||u̇||Lp → ∞ if ||u||Lp → ∞. Moreover, from (B1), α + 1 < p, hence, we have
ϕ(u) → +∞ while ||u|| → ∞ in W̃ 1,p

T . On the other hand, for ∀u ∈ RN , we
have

ϕ(u) =
∫ T

0

F (t, u)dt

(3.21)

≤
∫

[0,T ]\Eδ

(c(t)|u|−γ + d(t))dt−
∫

Eδ

N |u|(p+q)αdt

≤M−γ

∫

[0,T ]\Eδ

c(t)dt+
∫

[0,T ]\Eδ

d(t)dt−meas(Eδ)NM (p+q)α
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≤M−γ

∫

[0,T ]\Eδ

c(t)dt+
∫

[0,T ]\Eδ

d(t)dt−meas(Eδ)N, ∀ |u| ≥M.

It is easy to obtain that

(3.22) ϕ(u) → −∞, |u| → ∞, u ∈ RN .

Then, from the Saddle Point Theorem, we obtain that the problem (1.1) has
at least one solution. ¤

Remark 3.1. If ∇F (t, θ) 6≡ θ for t ∈ [0, T ], the Hamiltonian system (1.1) has
non-trivial solutions.

Theorem 3.2. Assume F (t, u) satisfy (A) and (B1)-(B4) and the following
conditions:

(B5) F (t, θ) = 0, F (t,−u) = F (t, u);
(B6) there exists e(t) ∈ L1(0, T ;R+) and constants β satisfying β > p and

M ′ > 0 such that F (t, u) ≥ −e(t)|u|β holds for u ∈ W̃ 1,p
T and ||u|| ≤

M ′;
(B7) there exists l(t) satisfying

∫ T

0
l(t)dt > 0 and constants m > p and

M ′′ > M ′ such that
∫ T

0
F (t, u)dt ≤ − ∫ T

0
l(t)dt||u||m holds for u ∈ V

and ||u|| ≥M ′′ , where V is an arbitrary subspace of W 1,p
T and dimV <

∞.
Then problem (1.1) has infinite periodic solutions in W 1,p

T .

Proof. From (B5), ϕ is an even functional satisfying ϕ(θ) = 0. For u ∈ W̃ 1,p
T ,

∫ T

0

F (t, u)dt ≥ −
∫ T

0

e(t)|u|βdt ≥ −||u||β∞
∫ T

0

e(t)dt ≥ −T β
q ||u̇||βLp

∫ T

0

e(t)dt

holds. Then, by (3.1),

ϕ(u) =
1
p
||u̇||pLp +

∫ T

0

F (t, u)dt ≥ 1
p
||u̇||pLp − T

β
q ||u̇||βLp

∫ T

0

e(t)dt(3.23)

≥ 1
p(T + 1)p

||u||p − T
β
q

∫ T

0

e(t)dt||u||β

holds. Choose M ′ > ρ1 > 0 small enough such that ρ2 = 1
p(T+1)p ρ

p
1 −

T
β
q

∫ T

0
e(t)dtρβ

1 > 0. Then, one has ϕ(u) ≥ ρ2 > 0, that is, there exists
ρ1 > 0, ρ2 > 0, ϕ(u) ≥ ρ2 holds for u ∈ {u ∈ W̃ 1,p

T : ||u|| = ρ1}.
Suppose (A2) is not satisfied, that is, there exists V1 ⊂ W 1,p

T which is a
subspace with finite dimension such that {u ∈ V1 : ϕ(u) ≥ 0} is unbounded.
Then, there exist (un)n∈N ⊂ V1, ||un|| → ∞ as n → ∞, and ϕ(un) ≥ 0.
Moreover, we may assume ||un|| ≥M ′′. Then,

ϕ(un) =
1
p
||u̇n||pLp +

∫ T

0

F (t, un)dt ≤ 1
p
||u̇n||pLp − ||un||m

∫ T

0

l(t)dt(3.24)
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≤ 1
p

(∫ 1

0

|un|pdt+
∫ 1

0

|u̇n|pdt
)
− ||un||m

∫ T

0

l(t)dt

=
1
p
||un||p − ||un||m

∫ T

0

l(t)dt.

Hence, we have limn→∞ ϕ(un) = −∞, which contradicts with ϕ(un) ≥ 0. Then
(A2) is satisfied. Hence, ϕ has infinite critical points in W 1,p

T . Therefore, (1.1)
has infinite solutions. ¤

Remark 3.2. From Theorem 2.2, we have the Hamiltonian system (1.1) has
infinitely non-trivial solutions.

Similarly, we have the following theorem.

Theorem 3.3. Assume F (t, u) satisfy (A) and (B1)-(B5) and the following
conditions:

(B′6) there exists e(t) ∈ L1(0, T ;R+) satisfying 1
p > T

p
q

∫ T

0
e(t)dt and a con-

stant M ′ > 0 such that F (t, u) ≥ −e(t)|u|p holds for u ∈ W̃ 1,p
T and

||u|| ≤M ′;
(B′7) there exists l(t) satisfying 1

p <
∫ T

0
l(t)dt and a constant M ′′ > M ′ such

that
∫ T

0
F (t, u)dt ≤ − ∫ T

0
l(t)dt||u||p holds for u ∈ V and ||u|| ≥ M ′′,

where V is an arbitrary subspace of W 1,p
T and dimV <∞.

Then problem (1.1) has infinite periodic solutions in W 1,p
T .

Example 3.1. Let T = 1
3 ,γ = 11

2 , and F : R× R→ R as

F (t, x) =
{ −2|x|2 + |x| − 3|x|3, |x| < 1,
−2|x|2 − 9|x|+ 9− 2|x|− 1

2 , |x| ≥ 1.

Here, G(x) = −2|x|2 and

H(t, x) =
{ |x| − 3|x|3, |x| < 1,
−9|x|+ 9− 2|x|− 1

2 , |x| ≥ 1.

It is obvious that α = 0, F (t, 0) = 0, F (t,−x) = F (t, x). Moreover, F (t, x) ≥
−4|x|2 if |x| < 1 and there exists M ′′ > 1 such that −9|x|+ 9− 2|x|− 1

2 < 0 if
|x| ≥ M ′′, so,

∫ T

0
F (t, x)dt ≤ − 2

3 |x|2. Hence, F (t, x) satisfies all conditions of
Theorem 3.3.
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