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SCREEN CONFORMAL LIGHTLIKE REAL
HYPERSURFACES OF AN INDEFINITE

COMPLEX SPACE FORM

Dae Ho Jin

Abstract. In this paper, we study the geometry of screen conformal
lightlike real hypersurfaces of an indefinite Kaehler manifold. The main
result is a characterization theorem for screen conformal lightlike real
hypersurfaces of an indefinite complex space form.

1. Introduction

It is well known that the normal bundle TM⊥ of the lightlike hypersurfaces
M of a semi-Riemannian manifold M̄ is a vector subbundle of the tangent
bundle TM of rank 1. Then there exists a complementary non-degenerate
vector bundle S(TM) of TM⊥ in TM , which called a screen distribution on
M , such that

(1.1) TM = TM⊥ ⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by (M, g, S(TM)). Denote by F (M) the algebra of smooth func-
tions on M and by Γ(E) the F (M) module of smooth sections of a vector
bundle E over M . We use the same notation for any other vector bundle.

We known [2] that, for any null section ξ of TM⊥ on a coordinate neighbor-
hood U ⊂ M , there exists a unique null section N of a unique vector bundle
tr(TM) of rank 1 in S(TM)⊥ satisfying

(1.2) ḡ (ξ, N) = 1, ḡ(N, N) = ḡ(N, X) = 0

for any X ∈ Γ(S(TM)). In this case, TM̄ is decomposed as follows:

(1.3) TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

We call tr(TM) and N the transversal vector bundle and the null transversal
vector field of M with respect to S(TM), respectively.
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The purpose of this paper is to prove a characterization theorem for lightlike
real hypersurfaces M of an indefinite complex space form M̄(c): If M is screen
conformal, then c = 0 (Theorem 3.7). Using this theorem, we prove several ad-
ditional theorems for screen conformal lightlike real hypersurfaces M of M̄(c).

The local Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + B(X, Y )N ,(1.4)
∇̄XN = −ANX + τ(X)N ,(1.5)
∇XPY = ∇∗XPY + C(X,PY )ξ,(1.6)
∇Xξ = −A∗ξX − τ(X)ξ(1.7)

for any X, Y ∈ Γ(TM), where ∇̄, ∇ and ∇∗ are the Levi-Civita connection of
M̄ , the liner connections on TM and S(TM) respectively, P is the projection
morphism of Γ(TM) on Γ(S(TM)) with respect to the decomposition (1.1), B
and C are the local second fundamental forms on TM and S(TM) respectively,
AN and A∗ξ are the shape operators on TM and S(TM) respectively and τ is a
1-form on TM . Since ∇̄ is torsion-free, ∇ is also torsion-free and B is symmetric
on TM . From the fact that B(X, Y ) = ḡ(∇̄XY, ξ) for any X, Y ∈ Γ(TM), we
show that the local second fundamental form B is independent of the choice of
a screen distribution and satisfies

(1.8) B(X, ξ) = 0

for any X ∈ Γ(TM). The induced connection ∇ of M is not metric and satisfies

(1.9) (∇Xg)(Y,Z) = B(X, Y ) η(Z) + B(X, Z) η(Y )

for any X, Y, Z ∈ Γ(TM), where η is a 1-form such that

(1.10) η(X) = ḡ(X, N)

for any X ∈ Γ(TM). But the connection ∇∗ on S(TM) is metric. Two local
second fundamental forms B and C are related to their shape operators by

B(X,Y ) = g(A∗ξX, Y ), ḡ(A∗ξX, N) = 0,(1.11)

C(X, PY ) = g(ANX, PY ), ḡ(ANX, N) = 0,(1.12)

for any X, Y ∈ Γ(TM). From (1.11), the operator A∗ξ is Γ(S(TM))-valued
self-adjoint on Γ(TM) with respect to the induced metric g on M such that

(1.13) A∗ξξ = 0.

Thus ξ is an eigenvector of A∗ξ corresponding to the eigenvalue 0.
We denote by R̄, R and R∗ the curvature tensors of the Levi-Civita connec-

tion ∇̄ of M̄ , the induced connection∇ of M and the connection∇∗ on S(TM),
respectively. Using the Gauss-Weingarten equations for M and S(TM), we ob-
tain the Gauss-Codazzi equations for M and S(TM) such that

ḡ(R̄(X, Y )Z, PW ) = g(R(X, Y )Z, PW )(1.14)
+ B(X, Z)C(Y, PW )−B(Y, Z)C(X, PW ),
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ḡ(R̄(X, Y )Z, ξ) = g(R(X, Y )Z, ξ)(1.15)
= (∇XB)(Y, Z)− (∇Y B)(X, Z)

+B(Y, Z)τ(X)−B(X, Z)τ(Y ),
ḡ(R̄(X, Y )Z, N) = g(R(X, Y )Z, N),(1.16)

g(R(X, Y )PZ, PW ) = g(R∗(X, Y )PZ, PW )(1.17)
+C(X, PZ)B(Y, PW )
−C(Y, PZ)B(X, PW ),

g(R(X, Y )PZ, N) = (∇XC)(Y, PZ)− (∇Y C)(X, PZ)(1.18)
+C(X, PZ)τ(Y )− C(Y, PZ)τ(X)

for any X, Y, Z, W ∈ Γ(TM). The Ricci tensor R̄ic of M̄ is defined by

(1.19) R̄ic(X, Y ) = trace{Z → R̄(Z, X)Y }, ∀X, Y ∈ Γ(TM̄).

M̄ is called Ricci flat if its Ricci tensor vanishes identically. If dim M̄ > 2 and
R̄ic = γ̄g, where γ̄ is a constant, then M̄ is called an Einstein manifold.

2. Hypersurfaces of indefinite Kaehler manifolds

Let M̄ = (M̄, J, ḡ) be a real 2m-dimensional indefinite Kaehler manifold,
where ḡ is a semi-Riemannian metric of index q = 2v (0 < v < m) and J is an
almost complex structure on M̄ satisfying, for all X, Y ∈ Γ(TM̄),

(2.1) J2 = −I, ḡ(JX, JY ) = ḡ(X, Y ), (∇̄XJ)Y = 0.

An indefinite complex space form, denoted by M̄(c), is a connected indefinite
Kaehler manifold of constant holomorphic sectional curvature c such that

R̄(X, Y )Z =
c

4
{ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX(2.2)

− ḡ(JX,Z)JY + 2ḡ(X, JY )JZ}
for all X, Y, Z ∈ Γ(TM). Suppose (M, g, S(TM)) is a lightlike real hypersur-
face of M̄ , where g is the degenerate induced metric of M . Then the screen
distribution S(TM) splits as follows [2]:

If ξ and N are local sections of TM⊥ and tr(TM) respectively, we have

(2.3) ḡ(Jξ, ξ) = ḡ(Jξ, N) = ḡ(JN, ξ) = ḡ(JN, N) = 0, ḡ(Jξ, JN) = 1.

This shows that Jξ and JN are vector fields tangent to M . Thus J(TM⊥)
and J(tr(TM)) are distributions on M of rank 1 such that TM⊥ ∩J(TM⊥) =
{0} and TM⊥ ∩ J(tr(TM)) = {0}. Hence J(TM⊥) ⊕ J(tr(TM)) is a vector
subbundle of S(TM) of rank 2. Then there exists a non-degenerate almost
complex distribution Do on M with respect to J , i.e., J(Do) = Do, such that

(2.4) S(TM) = {J(TM⊥)⊕ J(tr(TM))} ⊕orth Do.

Therefore the general decompositions (1.1) and (1.3) become respectively

TM = {J(TM⊥)⊕ J(tr(TM))} ⊕orth Do ⊕orth TM⊥,(2.5)
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TM̄ = {J(TM⊥)⊕ J(tr(TM))} ⊕orth Do ⊕orth {tr(TM)⊕ TM⊥}.(2.6)

Consider the 2-lightlike almost complex distribution D such that

(2.7) D = {TM⊥ ⊕orth J(TM⊥)} ⊕orth Do ; TM = D ⊕ J(tr(TM))

and the local lightlike vector fields U and V such that

(2.8) U = −JN ; V = −Jξ.

Denote by S the projection morphism of TM on D with respect to the decom-
position (2.7). Then any vector field X on M is expressed as follows

(2.9) X = SX + u(X)U ; JX = FX + u(X)N,

where u and v are 1-forms locally defined on M by

(2.10) u(X) = g(X, V ), v(X) = g(X, U)

and F is a tensor field of type (1, 1) globally defined on M by

(2.11) FX = JSX, ∀X ∈ Γ(TM).

Apply J to the second equation of (2.9) and using (2.1) and (2.8), we have

(2.12) F 2X = −X + u(X)U ; u(U) = 1.

Thus (F, u, U) defines an almost contact structure on M . But it is not an
almost contact metric structure. Because, using (2.1)-2 and (2.9)-2, we have

(2.13) g(FX,FY ) = g(X, Y )− u(X)v(Y )− u(Y )v(X)

for all X, Y ∈ Γ(TM). By using (2.9)-2 and (2.10) and Gauss-Weingarten
equations for a lightlike hypersurface, for any X, Y ∈ Γ(TM), we deduce

(∇Xu)(Y ) = −u(Y )τ(X)−B(X,FY ),(2.14)
(∇Xv)(Y ) = v(Y )τ(X)− g(ANX, FY ),(2.15)
(∇XF )(Y ) = u(Y )ANX −B(X, Y )U.(2.16)

Differentiate (2.8) with X and use (1.5), (1.7), (2.1)-3 and (2.9)-2, we have

B(X, U) = v(A∗ξX) = u(ANX) = C(X, V ), ∀X ∈ Γ(TM),(2.17)

∇XU = F (ANX) + τ(X)U, ∇XV = F (A∗ξX)− τ(X)V.(2.18)

Example 1. Let (R6
2, ḡ) be a 6-dimensional semi-Euclidean space of index 2

with signature (−, −, +, +, +, +) of the canonical basis (∂0, . . . , ∂5). Con-
sider a Monge hypersurface M of R6

2 given by

x0 = u1 + u2 + u3 and xi = ui (1 ≤ i ≤ 5).

Then the tangent bundle TM is spanned by{
∂u1

= ∂0 + ∂1, ∂u2
= ∂0 + ∂2, ∂u3

= ∂0 + ∂3, ∂u4
= ∂4, ∂u5

= ∂5

}
.

It is easy to check that M is a lightlike hypersurface whose radical distribution
Rad(TM) is spanned by

ξ = ∂0 − ∂1 + ∂2 + ∂3.
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Let V = ∂0 − ∂1, then g(V, V ) = −2 and g(ξ, V ) = −2. Then the lightlike
transversal vector bundle is given by

tr(TM) = Span{N = −1
4
(∂0 − ∂1 − ∂2 − ∂3)}.

It follows that the corresponding screen distribution S(TM) is spanned by

{W1 = ∂0 + ∂1, W2 = ∂2 − ∂3, W3 = ∂4, W4 = ∂5} .

Since R6
2 has complex structure J , we see that Jξ = W1 −W2 ∈ Γ(S(TM)),

JN = − 1
4{W1 + W2} ∈ Γ(S(TM)), JW3 = W4 and JW4 = −W3. Thus the

almost complex distribution Do is given by Do = Span{W3, W4}.
Theorem 2.1. Let (M, g, S(TM)) be a lightlike real hypersurface of an indef-
inite Kaehler manifold M̄ . Then we have the following assertions.

(i) If F and V are parallel with respect to the induced connection ∇ on M ,
then M is totally geodesic in M̄ and the 1-form τ vanishes.

(ii) If V and U are parallel with respect to the induced connection ∇ on M ,
then S(TM) is totally geodesic in M and the 1-form τ vanishes.

Proof. If V is parallel with respect to the induced connection ∇ on M , then,
from the second equation of (2.18), we have

J(A∗ξX)− u(A∗ξX)N − τ(X)V = 0, ∀X ∈ Γ(TM).

Apply J to the last equation and by using (2.1) and (2.8), we obtain

A∗ξX = u(A∗ξX)U and τ(X) = 0, ∀X ∈ Γ(TM).

Substituting the last equation in (2.17), we have

u(ANX) = v(A∗ξX) = g(A∗ξX, U) = u(A∗ξX)g(U,U) = 0, ∀X ∈ Γ(TM).

(i) If F is parallel with respect to ∇, then, from (2.16), we have

(2.19) B(X, Y ) = u(Y )u(ANX), ∀X, Y ∈ Γ(TM).

Thus if V is also parallel, we obtain B = 0, that is, M is totally geodesic in M̄ .
(ii) If U is parallel with respect to ∇, then, from (2.18)-1, we have

J(ANX)− u(ANX)N + τ(X)U = 0, ∀X ∈ Γ(TM).

Apply J to this equation and by using (2.1) and (2.8), we obtain

ANX = u(ANX)U and τ(X) = 0, ∀X ∈ Γ(TM).

Thus if V is also parallel, we obtain ANX = 0 for all X ∈ Γ(TM). Thus C = 0
due to (1.12), that is, S(TM) is totally geodesic in M . ¤

Theorem 2.2. Let (M, g, S(TM)) be a lightlike real hypersurface of an indefi-
nite Kaehler manifold M̄ . If F is parallel with respect to the induced connection
∇, then the almost complex distribution D is parallel with respect to the induced
connection ∇ and M is locally a product manifold Lu×M ], where Lu is a null
curve tangent to J(tr(TM)) and M ] is a leaf of D.
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Proof. In general, by using (1.4), (1.7), (1.11) and (2.1), we derive

g(∇Xξ, Jξ) = −g(ξ, ∇̄XJξ) = B(X, V ), g(∇XJξ, Jξ) = 0,(2.20)
g(∇XY, Jξ) = g(JY, ∇̄Xξ) = −g(JY,A∗ξX) = −B(X, JY )

for all X ∈ Γ(TM) and Y ∈ Γ(Do). If F is parallel with respect to the induced
connection ∇, then, taking Y = V and Y ∈ Γ(Do) in (2.19) by turns, we have
B(X, V ) = 0 and B(X, Y ) = 0 for all X ∈ Γ(TM) respectively. It follow that
g(∇Xξ, Jξ) = g(∇XJξ, Jξ) = g(∇XY, Jξ) = 0 due to JY ∈ Γ(Do). Thus
D is parallel with respect to ∇ and both D and J(tr(TM)) are integrable
distributions. Thus we obtain our theorem. ¤

3. Screen conformal lightlike real hypersurfaces

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold (M̄, ḡ)
is screen conformal [1] if the shape operators AN and A∗ξ of M and S(TM)
respectively are related by AN = ϕA∗ξ , or equivalently

(3.1) C(X,PY ) = ϕB(X, Y ), ∀X, Y ∈ Γ(TM),

where ϕ is a non-vanishing smooth function on a neighborhood U in M . In
particular, if ϕ is a non-zero constant, M is called screen homothetic [4].

Note 1. For a screen conformal M , since C is symmetric on Γ(S(TM)), S(TM)
is integrable. Thus M is locally a product manifold Lξ×M∗ where Lξ is a null
curve tangent to TM⊥ and M∗ is a leaf of S(TM) [2].

From (2.17) and (3.1), we obtain

(3.2) B(X, U − ϕV ) = 0, ∀X ∈ Γ(TM).

Theorem 3.1. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite Kaehler manifold M̄ . Then the non-null vector field
U − ϕV 6= 0 is conjugate to any vector field on M . In particular, U − ϕV is
an asymptotic vector field.

Corollary 1. Let (M, g, S(TM)) be a screen conformal lightlike real hypersur-
face of an indefinite Kaehler manifold M̄ . Then the second fundamental form
B (consequently, C) is degenerate on Γ(S(TM)).

Proof. Since B(X, U − ϕV ) = 0 for all X ∈ Γ(S(TM)) and U − ϕV ∈
Γ(S(TM)), therefore B is degenerate on Γ(S(TM)). ¤
Theorem 3.2. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite Kaehler manifold M̄ . If M or S(TM) is totally umbilic,
then M is totally geodesic in M̄ and the leaf M∗ of S(TM) is totally geodesic
in both M and M̄ .

Proof. If M is a totally umbilical lightlike real hypersurface of M̄ , then there
exists a smooth function ρ such that

B(X, Y ) = ρg(X, Y ), ∀X, Y ∈ Γ(TM).
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From this fact and the equation (3.2), we have

ρg(X, U − ϕV ) = 0, ∀X ∈ Γ(TM).

Replace X by V and U by turns in the last equation, we have ρ = 0 and ϕρ = 0
respectively. Thus B = C = 0, that is, M and S(TM) are totally geodesic. By
the same method for totally umbilical S(TM), we have B = C = 0. ¤

Theorem 3.3. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite Kaehler manifold M̄ . If one of the set {V, U, F} is
parallel with respect ∇ on M , then M is totally geodesic in M̄ and S(TM) is
totally geodesic in both M and M̄ . Moreover, if V or U is parallel, then τ = 0.

Proof. In the proof of Theorem 2.1, if V is parallel, then τ = 0, u(ANX) = 0
and A∗ξX = u(A∗ξX)U for any X ∈ Γ(TM). Using the second equation of the
above relations and the fact that AN = ϕA∗ξ , we have

u(A∗ξX) = u(ANX)/ϕ = 0, ∀X ∈ Γ(TM).

From this and the fact that A∗ξX = u(A∗ξX)U for all X ∈ Γ(TM), we have
A∗ξ = 0. Also AN = ϕA∗ξ = 0. Thus M and S(TM) are totally geodesic.

If U is parallel, then τ = 0 and ANX = u(ANX)U for any X ∈ Γ(TM).
Thus we have v(ANX) = 0 for any X ∈ Γ(TM). Using the equation (2.17)
and the fact that AN = ϕ A∗ξ , we have

u(ANX) = v(A∗ξX) = v(ANX)/ϕ = 0, ∀X ∈ Γ(TM).

It follow that AN = 0 and A∗ξ = 0. Thus M and S(TM) are totally geodesic.
If F is parallel, then we have (2.19). Replace Y by V in (2.19), we have

u(ANX) = ϕu(A∗ξX) = ϕ B(X, V ) = 0, ∀X ∈ Γ(TM).

Thus, from (2.19) and (3.1), we have B = C = 0. ¤

From the equation (2.20) and Theorems 3.2 and 3.3, we have:

Theorem 3.4. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite Kaehler manifold M̄ . If (i) M or S(TM) is a totally
umbilic, or (ii) one of the set {V, U, F} is parallel with respect to ∇, then D is
parallel with respect to ∇ and M is locally a product manifold Lu ×M ], where
Lu is a null curve tangent to J(tr(TM)) and M ] is a leaf of D.

As {U, V } is a basis of Γ(J(TM⊥)⊕ J(tr(TM))), the vector fields

(3.3) µ = U − ϕV, ν = U + ϕV

form an orthogonal basis of Γ(J(TM⊥)⊕ J(tr(TM))). From (3.2), we have

(3.4) g(A∗ξµ,X) = B(µ,X) = 0, g(A∗ξµ,N) = 0, A∗ξµ = 0,
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that is, µ is an eigenvector field of A∗ξ on S(TM) corresponding to the eigenvalue
0. Let G(µ) = Span{µ}. Then S(µ) = Do ⊕orth Span{ν} is a complementary
vector subbundle to G(µ) in S(TM) and we have the following decomposition

(3.5) S(TM) = G(µ) ⊕orth S(µ).

Theorem 3.5. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite Kaehler manifold M̄ . Then the non-null vector field
µ is parallel with respect to ∇ if and only if the 1-form τ vanishes and the
conformal factor ϕ is a constant.

Proof. From (2.18), (3.3) and the linearity of F , we have

(3.6) ∇Xµ = τ(X)ν −X[ϕ]V, ∀X ∈ Γ(TM),

due to AN = ϕA∗ξ . Thus we see that µ is parallel if and only if

τ(X)U − {X[ϕ]− ϕτ(X)}V = 0, ∀X ∈ Γ(TM).

Taking the scalar product with V and U in turns, we get assertion. ¤
Note 2. From (2.18) and (3.4), we have

∇Xν = 2F (ANX) + τ(X)µ + X[ϕ]V, ∀X ∈ Γ(TM).

Thus, using the fact g(F (ANX), V ) = g(F (ANX), U) = 0, we show that ν is
parallel if and only if τ = 0 on M , ϕ is a constant and both U and V are
parallel. Moreover if ν is parallel, then µ is also parallel and B = C = 0.

Theorem 3.6. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite Kaehler manifold M̄ . If µ is parallel with respect to ∇,
then M is locally a product manifold Lξ ×Lµ ×M \, where Lξ and Lµ are null
and non-null geodesic tangent to TM⊥ and G(µ) respectively and M \ is a leaf
of S(µ). Moreover, M is screen homothetic.

Proof. In general, using (3.6), for X ∈ Γ(S(µ)) and Y ∈ Γ(Do), we derive

g(∇XY, µ) = g(∇̄XY, µ) = −g(Y, ∇Xµ) = 0,(3.7)
g(∇Y ν, µ) = −g(ν, ∇Y µ) = Y [ϕ]− 2ϕτ(Y ).(3.8)

If µ is parallel, then g(∇XY, µ) = g(∇Xν, µ) = 0. Thus S(µ) is a integrable
distribution. From this fact and Note 1, we obtain our theorem. ¤
Corollary 2. Let (M, g, S(TM)) be a screen conformal lightlike real hypersur-
face of an indefinite Kaehler manifold M̄ . If µ is parallel with respect to ∇,
then M is locally a product manifold Lµ×M [, where Lµ is a non-null geodesic
tangent to G(µ) and M [ is a leaf of R(µ) = Do ⊕orth Span{ξ, ν}.
Proof. From (1.1) and (3.5), we have TM = G(µ) ⊕orth R(µ). For any X ∈
Γ(R(µ)) and Y ∈ Γ(Do), we get

g(∇Y ξ, µ) = −g(A∗ξY, µ) = −g(Y, A∗ξµ) = 0,

g(∇Y ν, µ) = −g(ν, ∇Y µ) = Y [ϕ]− 2ϕτ(Y ),
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g(∇XY, µ) = g(∇̄XY, µ) = −g(Y, ∇Xµ) = 0.

Thus the distribution R(µ) is integrable. We have our assertion. ¤
Theorem 3.7. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite complex space form M̄(c). Then we have c = 0. In
particular, the ambient manifold M̄(c) is a semi-Euclidean space.

Proof. By using (1.15) and (2.2), we have
c

4
{u(X)ḡ(JY, Z)− u(Y )ḡ(JX, Z) + 2u(Z)ḡ(X, JY )}(3.9)

= (∇XB)(Y,Z)− (∇Y B)(X, Z) + B(Y,Z)τ(X)−B(X, Z)τ(Y )

for all X, Y, Z ∈ Γ(TM). Using this, (1.16), (1.18) and (3.2), we obtain
c

4
{g(Y, PZ)η(X)− g(X,PZ)η(Y ) + v(X)ḡ(JY, PZ)(3.10)

− v(Y )ḡ(JX, PZ) + 2v(PZ)ḡ(X, JY )}
= {X[ϕ]− 2ϕτ(X)}B(Y, PZ)− {Y [ϕ]− 2ϕτ(Y )}B(X,PZ)

+
c

4
ϕ{u(X)ḡ(JY, PZ)− u(Y )ḡ(JX, PZ) + 2u(PZ)ḡ(X, JY )}.

Replacing Y by ξ in (3.10), we obtain

{ξ[ϕ]− 2ϕτ(ξ)}B(X, PZ)(3.11)

=
c

4
{g(X, PZ) + v(X)u(PZ) + 2u(X)v(PZ)− 3ϕu(X)u(PZ)}.

Taking X = V ; PZ = U and X = U ; PZ = V , we have

(3.12) {ξ[ϕ]− 2ϕτ(ξ)}B(V, U) =
1
2
c, {ξ[ϕ]− 2ϕτ(ξ)}B(U, V ) =

3
4
c,

respectively. From the two equation of (3.12), we show that c = 0. Therefore,
M̄(c) is a semi-Euclidean space. ¤
Corollary 3. There exist no screen conformal lightlike real hypersurfaces M
of indefinite complex space form M̄(c) with c 6= 0.

The type number t∗(p) of M at a point p ∈ M is the rank of the shape
operator A∗ξ at p. Then, from (3.7) and (3.8), we obtain:

Theorem 3.8. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite complex space form M̄(c) such that t∗(p) > 1 for any
p ∈ M . Then M is locally a product manifold Lξ ×Lµ×M \, where Lξ and Lµ

are null and non-null curve tangent to TM⊥ and G(µ) respectively and M \ is
a leaf of S(µ).

Proof. First, for any X ∈ Γ(S(µ)) and Y ∈ Γ(Do), since g(Y, U) = g(Y, V ) = 0
for Y ∈ Γ(Do), we show that

g(∇XY, µ) = g(∇̄XY, µ) = −g(Y, ∇̄Xµ) = −g(Y, ∇Xµ)

= X[ϕ]g(Y, V )− τ(X)g(Y, ν) = −τ(X){g(Y, U) + ϕg(Y, V )} = 0.
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Thus (3.7) holds. Next, from the equation (3.10) with c = 0, we obtain

{X[ϕ]− 2ϕτ(X)}A∗ξY = {Y [ϕ]− 2ϕτ(Y )}A∗ξX.

Suppose there exists a vector field Xo ∈ Γ(TM) such that Xo[ϕ]−2ϕτ(Xo) 6= 0.
Then A∗ξY = fA∗ξXo for any Y ∈ Γ(TM), where f is a smooth function.
It follows that the rank of A∗ξ is 1. It is a contradiction as rank A∗ξ > 1.
Consequently, we have X[ϕ] − 2ϕτ(X) = 0 for all X ∈ Γ(TM) on U . Thus
(3.8) also holds. Therefore S(µ) is integrable distribution by (3.7) and (3.8).
Consequently, we have our theorem. ¤

4. Screen conformal Einstein hypersurfaces

Let R(0, 2) denote the induced Ricci type tensor of M given by

(4.1) R(0, 2)(X, Y ) = trace{Z → R(Z, X)Y }
for any X, Y ∈ Γ(TM). Consider the induced quasi-orthonormal frame field
{ξ; Wa} on M such that Rad(TM) = Span{ξ} and S(TM) = Span{Wa}.
Using this quasi-orthonormal frame field and the equation (3.1), we obtain

(4.2) R(0, 2)(X,Y ) =
m∑

a=1

εa g(R(Wa, X)Y, Wa) + ḡ(R(ξ, X)Y, N)

for any X, Y ∈ Γ(TM) and εa = g(Wa,Wa) is the sign of Wa. In general, the
induced Ricci type tensor R(0, 2), defined by the method of the geometry of the
non-degenerate submanifolds [8], is not symmetric [3, 5]. Therefore R(0, 2) has
no geometric or physical meaning similar to the Ricci curvature of the non-
degenerate submanifolds and it is just a tensor quantity. Hence we need the
following definition: A tensor field R(0, 2) of lightlike submanifolds M is called
its induced Ricci tensor if it is symmetric. A symmetric R(0, 2) tensor will be
denoted by Ric. If M is a screen conformal lightlike real hypersurface of a
complex space form M̄(c), then c = 0. Using (1.14) and (1.16), we have

(4.3) R(0, 2)(X,Y ) = ϕ{B(X, Y )trA∗ξ − g(A∗ξX,A∗ξY )}, ∀X, Y ∈ Γ(TM).

Theorem 4.1. Let (M, g, S(TM)) be a screen conformal lightlike real hyper-
surface of an indefinite complex space form M̄(c). Then the Ricci type tensor
R(0, 2) is a symmetric Ricci tensor Ric.

Note 3. Suppose the Ricci type tensor R(0, 2) is symmetric. Then there ex-
ists a pair {ξ, N} on U such that the corresponding 1-form τ vanishes [2].
We call such a pair a distinguished null pair [5] of M . Although, in general,
S(TM) is not unique, it is canonically isomorphic to the factor vector bun-
dle S(TM)] = TM/Rad(TM) considered by Kupeli [7]. Thus all S(TM) are
mutually isomorphic. For this reason, in the sequel, let (M, g, S(TM)) be a
screen homothetic lightlike real hypersurface equipped with the distinguished
null pair {ξ,N} of an indefinite complex space form (M̄(c), ḡ).
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Theorem 4.2. Let (M, g, S(TM)) be a screen homothetic lightlike real hyper-
surface of an indefinite complex space form M̄(c). Then M is locally a product
manifold Lξ × Lµ × M \, where Lξ and Lµ are null and non-null geodesics
respectively and M \ is a leaf of some non-degenerate distribution.

Proof. Since M is a screen homothetic lightlike real hypersurface equipped
with a distinguished null pair {ξ,N}, from (1.7), (1.13) and (3.6), we have
∇ξξ = ∇µµ = 0. In particular, µ is a parallel vector field with respect to ∇
due to (3.6). Thus, by Theorem 3.6, we have our theorem. ¤

Theorem 4.3. Any screen conformal Einstein lightlike real hypersurface of an
indefinite complex space form M̄(c) is Ricci flat.

Proof. Since M is a screen conformal lightlike real hypersurface of an indefinite
complex space form M̄(c), we get c = 0. The induced tensor R(0, 2) is a
symmetric Ricci tensor Ric by (4.3). Let M be an Einstein manifold, that is,
R(0, 2) = γg for some constant γ. Then the equation (4.3) reduces to

(4.4) g(A∗ξX,A∗ξY )− αg(A∗ξX, Y )− γϕ−1 g(X, Y ) = 0,

where α = trA∗ξ is trace of A∗ξ . Put X = Y = µ in (4.4) and using the fact that
A∗ξµ = 0 due to (3.4), we have γ = 0. Thus M is Ricci flat. ¤

Theorem 4.4. Let (M, g, S(TM)) be a screen homothetic Einstein lightlike
real hypersurface of an indefinite complex space form M̄(c) of index 2. Then
M is locally a product manifold Lξ×Lµ×M \ or Lξ×Lµ×Lα×M0, where Lξ,
Lµ and Lα are null geodesic, timelike geodesic and spacelike curve respectively
and M \ and M0 are Euclidean spaces.

Proof. Let µ = 1√
2εϕ
{U − ϕV }, where ε = sgn ϕ. Then µ is a unit timelike

eigenvector field of A∗ξ corresponding to the eigenvalue 0 by (3.4) and S(µ) is
an integrable Riemannian distribution by Theorem 4.2, due to q = 2. Since
g(A∗ξX, N) = 0 and g(A∗ξX, µ) = 0, A∗ξ is Γ(S(µ))-valued real self-adjoint
operator. Thus A∗ξ have (2m−3) ≡ n real orthonormal eigenvector fields in S(µ)
and is diagonalizable. Consider a frame field of eigenvectors {µ, e1, . . . , en} of
A∗ξ on S(TM) such that {e1, . . . , en} is an orthonormal frame field of A∗ξ on
S(µ). Then A∗ξei = λiei (1 ≤ i ≤ n). Put X = Y = ei in (4.4) with γ = 0, we
show that each eigenvalue λi of A∗ξ is a solution of the equation

(4.5) x(x− α) = 0.

The equation (4.5) has at most two distinct real solutions 0 and α on U . Assume
that there exists p ∈ {0, . . . , n} such that λ1 = · · · = λp = 0 and λp+1 = · · · =
λn = α, by renumbering if necessary. Then we have

α = trA∗ξ = (n− p)α.

If α = 0, then A∗ξX = 0 for all X ∈ Γ(TM). Also we have ANX = 0 for
all X ∈ Γ(TM). Thus M and S(TM) are totally geodesic. From (1.14) and



352 DAE HO JIN

(1.17), we have R∗(X,Y )Z = R̄(X, Y )Z = 0 for all X, Y, Z ∈ Γ(S(TM)).
Thus M is locally a product manifold Lξ × (M∗ = Lµ ×M \), where Lξ and
Lµ are null and timelike geodesic tangent to TM⊥ and G(µ) respectively and
the leaf M∗ of S(TM) is a Minkowski space. Since ∇Xµ = 0 and

g(∇∗XY, µ) = −g(Y,∇∗Xµ) = −g(Y,∇Xµ) = 0

for all X, Y, Z ∈ Γ(S(TM)), we have ∇∗XY ∈ Γ(S(µ)) and R∗(X,Y )Z ∈
Γ(S(µ)). This imply ∇∗XY = Q(∇∗XY ), that is, M \ is a totally geodesic and
R∗(X, Y )Z = Q(R∗(X,Y )Z) = 0, where Q is a projection morphism of S(TM)
on S(µ) with respect to the decomposition (3.5). Thus M \ is a Euclidean space.

If α 6= 0, then p = n− 1. Consider the following two distributions on S(µ);

Γ(E0) = {X ∈ Γ(S(µ)) | A∗ξX = 0},
Γ(Eα) = {X ∈ Γ(S(µ)) | A∗ξX = αX}.

Then we know that the distributions E0 and Eα are mutually orthogonal non-
degenerate subbundle of S(µ), of rank (n−1) and 1 respectively, satisfy S(µ) =
E0 ⊕orth Eα. From (4.4), we get A∗ξ(A

∗
ξ − αQ) = 0. Using this equation, we

have ImA∗ξ ⊂ Γ(Eα) and Im(A∗ξ − αQ) ⊂ Γ(E0). For any X, Y ∈ Γ(E0) and
Z ∈ Γ(S(µ)), we get (∇XB)(Y, Z) = −g(A∗ξ∇XY, Z). Use this and the fact
(∇XB)(Y, Z) = (∇Y B)(X,Z), we have g(A∗ξ [X, Y ], Z) = 0. If we take Z ∈
Γ(Eα), since ImA∗ξ ⊂ Γ(Eα) and Eα is non-degenerate, we have A∗ξ [X,Y ] = 0.
Thus [X,Y ] ∈ Γ(E0) and E0 is integrable. Thus M is locally a product manifold
Lξ × (M∗ = Lµ × Lα × M0), where Lα is a spacelike curve and M0 is an
(n − 1)-dimensional Riemannian manifold satisfy A∗ξ = 0. From (1.14) and
(1.18), we have R∗(X, Y )Z = R̄(X, Y )Z = 0 for all X, Y, Z ∈ Γ(E0). Since
g(∇∗XY, µ) = 0 and g(∇∗XY, en) = −g(Y,∇Xen) = 0 for all X, Y ∈ Γ(E0)
because ∇XW ∈ Γ(Eα) for X ∈ Γ(E0) and W ∈ Γ(Eα). In fact, from (1.15)
such that c = τ = 0, we get

g({(A∗ξ − αQ)∇XW −A∗ξ∇W X}, Z) = 0

for all X ∈ Γ(E0), W ∈ Γ(Eα) and Z ∈ Γ(S(µ)). Using the fact that S(µ)
is non-degenerate distribution, we have (A∗ξ − αQ)∇XW = A∗ξ∇W X. Since
the left term of this equation is in Γ(E0) and the right term is in Γ(Eα) and
E0 ∩ Eα = {0}, we have (A∗ξ −αQ)∇XW = 0 and A∗ξ∇W X = −X[ϕ]W . This
imply that ∇XW ∈ Γ(Eα). Thus ∇∗XY = π∇∗XY for all X, Y ∈ Γ(E0), where
π is the projection morphism of Γ(S(TM)) on Γ(E0) and π∇∗ is the induced
connection on E0. This imply that the leaf M0 of E0 is totally geodesic. As
g(R∗(X, Y )Z, µ) = 0 and g(R∗(X, Y )Z, en) = 0 for all X, Y, Z ∈ Γ(E0), we
have R∗(X, Y )Z = πR∗(X, Y )Z ∈ Γ(E0) and the curvature tensor πR∗ of E0

is flat. Thus M0 is a Euclidean space. ¤
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