SCREEN CONFORMAL LIGHTLIKE REAL HYPERSURFACES OF AN INDEFINITE COMPLEX SPACE FORM

Dae Ho Jin

Abstract

In this paper, we study the geometry of screen conformal lightlike real hypersurfaces of an indefinite Kaehler manifold. The main result is a characterization theorem for screen conformal lightlike real hypersurfaces of an indefinite complex space form.

1. Introduction

It is well known that the normal bundle $T M^{\perp}$ of the lightlike hypersurfaces M of a semi-Riemannian manifold \bar{M} is a vector subbundle of the tangent bundle $T M$ of rank 1. Then there exists a complementary non-degenerate vector bundle $S(T M)$ of $T M^{\perp}$ in $T M$, which called a screen distribution on M, such that

$$
\begin{equation*}
T M=T M^{\perp} \oplus_{\mathrm{orth}} S(T M) \tag{1.1}
\end{equation*}
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a lightlike hypersurface by $(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. We use the same notation for any other vector bundle.

We known [2] that, for any null section ξ of $T M^{\perp}$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique vector bundle $\operatorname{tr}(T M)$ of rank $1 \operatorname{in} S(T M)^{\perp}$ satisfying

$$
\begin{equation*}
\bar{g}(\xi, N)=1, \quad \bar{g}(N, N)=\bar{g}(N, X)=0 \tag{1.2}
\end{equation*}
$$

for any $X \in \Gamma(S(T M))$. In this case, $T \bar{M}$ is decomposed as follows:

$$
\begin{equation*}
T \bar{M}=T M \oplus \operatorname{tr}(T M)=\left\{T M^{\perp} \oplus \operatorname{tr}(T M)\right\} \oplus_{\text {orth }} S(T M) \tag{1.3}
\end{equation*}
$$

We call $\operatorname{tr}(T M)$ and N the transversal vector bundle and the null transversal vector field of M with respect to $S(T M)$, respectively.

[^0]The purpose of this paper is to prove a characterization theorem for lightlike real hypersurfaces M of an indefinite complex space form $\bar{M}(c)$: If M is screen conformal, then $c=0$ (Theorem 3.7). Using this theorem, we prove several additional theorems for screen conformal lightlike real hypersurfaces M of $\bar{M}(c)$.

The local Gauss and Weingarten formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N \tag{1.4}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N \tag{1.5}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{1.6}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi \tag{1.7}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$, where $\bar{\nabla}, \nabla$ and ∇^{*} are the Levi-Civita connection of \bar{M}, the liner connections on $T M$ and $S(T M)$ respectively, P is the projection morphism of $\Gamma(T M)$ on $\Gamma(S(T M))$ with respect to the decomposition (1.1), B and C are the local second fundamental forms on $T M$ and $S(T M)$ respectively, A_{N} and A_{ξ}^{*} are the shape operators on $T M$ and $S(T M)$ respectively and τ is a 1-form on $T M$. Since ∇ is torsion-free, ∇ is also torsion-free and B is symmetric on $T M$. From the fact that $B(X, Y)=\bar{g}\left(\nabla_{X} Y, \xi\right)$ for any $X, Y \in \Gamma(T M)$, we show that the local second fundamental form B is independent of the choice of a screen distribution and satisfies

$$
\begin{equation*}
B(X, \xi)=0 \tag{1.8}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. The induced connection ∇ of M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{1.9}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$, where η is a 1 -form such that

$$
\begin{equation*}
\eta(X)=\bar{g}(X, N) \tag{1.10}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. But the connection ∇^{*} on $S(T M)$ is metric. Two local second fundamental forms B and C are related to their shape operators by

$$
\begin{array}{ll}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0 \tag{1.12}
\end{array}
$$

for any $X, Y \in \Gamma(T M)$. From (1.11), the operator A_{ξ}^{*} is $\Gamma(S(T M))$-valued self-adjoint on $\Gamma(T M)$ with respect to the induced metric g on M such that

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 . \tag{1.13}
\end{equation*}
$$

Thus ξ is an eigenvector of A_{ξ}^{*} corresponding to the eigenvalue 0 .
We denote by \bar{R}, R and R^{*} the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ of \bar{M}, the induced connection ∇ of M and the connection ∇^{*} on $S(T M)$, respectively. Using the Gauss-Weingarten equations for M and $S(T M)$, we obtain the Gauss-Codazzi equations for M and $S(T M)$ such that
(1.14) $\bar{g}(\bar{R}(X, Y) Z, P W)=g(R(X, Y) Z, P W)$

$$
+B(X, Z) C(Y, P W)-B(Y, Z) C(X, P W)
$$

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, \xi)= & g(R(X, Y) Z, \xi) \tag{1.15}\\
= & \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z) \\
& +B(Y, Z) \tau(X)-B(X, Z) \tau(Y), \\
\bar{g}(\bar{R}(X, Y) Z, N)= & g(R(X, Y) Z, N) \tag{1.16}\\
g(R(X, Y) P Z, P W)= & g\left(R^{*}(X, Y) P Z, P W\right) \tag{1.17}\\
& +C(X, P Z) B(Y, P W) \\
& -C(Y, P Z) B(X, P W), \\
g(R(X, Y) P Z, N)= & \left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z) \tag{1.18}\\
& +C(X, P Z) \tau(Y)-C(Y, P Z) \tau(X)
\end{align*}
$$

for any $X, Y, Z, W \in \Gamma(T M)$. The Ricci tensor Ric of \bar{M} is defined by

$$
\begin{equation*}
\overline{\operatorname{Ric}}(X, Y)=\operatorname{trace}\{Z \rightarrow \bar{R}(Z, X) Y\}, \quad \forall X, Y \in \Gamma(T \bar{M}) \tag{1.19}
\end{equation*}
$$

\bar{M} is called Ricci flat if its Ricci tensor vanishes identically. If $\operatorname{dim} \bar{M}>2$ and $\overline{\text { Ric }}=\bar{\gamma} g$, where $\bar{\gamma}$ is a constant, then \bar{M} is called an Einstein manifold.

2. Hypersurfaces of indefinite Kaehler manifolds

Let $\bar{M}=(\bar{M}, J, \bar{g})$ be a real $2 m$-dimensional indefinite Kaehler manifold, where \bar{g} is a semi-Riemannian metric of index $q=2 v(0<v<m)$ and J is an almost complex structure on \bar{M} satisfying, for all $X, Y \in \Gamma(T \bar{M})$,

$$
\begin{equation*}
J^{2}=-I, \quad \bar{g}(J X, J Y)=\bar{g}(X, Y), \quad\left(\bar{\nabla}_{X} J\right) Y=0 \tag{2.1}
\end{equation*}
$$

An indefinite complex space form, denoted by $\bar{M}(c)$, is a connected indefinite Kaehler manifold of constant holomorphic sectional curvature c such that

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{c}{4}\{\bar{g}(Y, Z) X-\bar{g}(X, Z) Y+\bar{g}(J Y, Z) J X \tag{2.2}\\
& -\bar{g}(J X, Z) J Y+2 \bar{g}(X, J Y) J Z\}
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Suppose $(M, g, S(T M))$ is a lightlike real hypersurface of \bar{M}, where g is the degenerate induced metric of M. Then the screen distribution $S(T M)$ splits as follows [2]:

If ξ and N are local sections of $T M^{\perp}$ and $\operatorname{tr}(T M)$ respectively, we have

$$
\begin{equation*}
\bar{g}(J \xi, \xi)=\bar{g}(J \xi, N)=\bar{g}(J N, \xi)=\bar{g}(J N, N)=0, \quad \bar{g}(J \xi, J N)=1 \tag{2.3}
\end{equation*}
$$

This shows that $J \xi$ and $J N$ are vector fields tangent to M. Thus $J\left(T M^{\perp}\right)$ and $J(\operatorname{tr}(T M))$ are distributions on M of rank 1 such that $T M^{\perp} \cap J\left(T M^{\perp}\right)=$ $\{0\}$ and $T M^{\perp} \cap J(\operatorname{tr}(T M))=\{0\}$. Hence $J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M))$ is a vector subbundle of $S(T M)$ of rank 2 . Then there exists a non-degenerate almost complex distribution D_{o} on M with respect to J, i.e., $J\left(D_{o}\right)=D_{o}$, such that

$$
\begin{equation*}
S(T M)=\left\{J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M))\right\} \oplus_{\text {orth }} D_{o} . \tag{2.4}
\end{equation*}
$$

Therefore the general decompositions (1.1) and (1.3) become respectively

$$
\begin{equation*}
T M=\left\{J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M))\right\} \oplus_{\text {orth }} D_{o} \oplus_{\text {orth }} T M^{\perp} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
T \bar{M}=\left\{J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M))\right\} \oplus_{\text {orth }} D_{o} \oplus_{\text {orth }}\left\{\operatorname{tr}(T M) \oplus T M^{\perp}\right\} \tag{2.6}
\end{equation*}
$$

Consider the 2-lightlike almost complex distribution D such that

$$
\begin{equation*}
D=\left\{T M^{\perp} \oplus_{\text {orth }} J\left(T M^{\perp}\right)\right\} \oplus_{\text {orth }} D_{o} ; \quad T M=D \oplus J(\operatorname{tr}(T M)) \tag{2.7}
\end{equation*}
$$

and the local lightlike vector fields U and V such that

$$
\begin{equation*}
U=-J N ; \quad V=-J \xi \tag{2.8}
\end{equation*}
$$

Denote by S the projection morphism of $T M$ on D with respect to the decomposition (2.7). Then any vector field X on M is expressed as follows

$$
\begin{equation*}
X=S X+u(X) U ; \quad J X=F X+u(X) N \tag{2.9}
\end{equation*}
$$

where u and v are 1-forms locally defined on M by

$$
\begin{equation*}
u(X)=g(X, V), \quad v(X)=g(X, U) \tag{2.10}
\end{equation*}
$$

and F is a tensor field of type $(1,1)$ globally defined on M by

$$
\begin{equation*}
F X=J S X, \quad \forall X \in \Gamma(T M) . \tag{2.11}
\end{equation*}
$$

Apply J to the second equation of (2.9) and using (2.1) and (2.8), we have

$$
\begin{equation*}
F^{2} X=-X+u(X) U ; \quad u(U)=1 \tag{2.12}
\end{equation*}
$$

Thus (F, u, U) defines an almost contact structure on M. But it is not an almost contact metric structure. Because, using (2.1)-2 and (2.9)-2, we have

$$
\begin{equation*}
g(F X, F Y)=g(X, Y)-u(X) v(Y)-u(Y) v(X) \tag{2.13}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$. By using (2.9)-2 and (2.10) and Gauss-Weingarten equations for a lightlike hypersurface, for any $X, Y \in \Gamma(T M)$, we deduce

$$
\begin{align*}
\left(\nabla_{X} u\right)(Y) & =-u(Y) \tau(X)-B(X, F Y) \tag{2.14}\\
\left(\nabla_{X} v\right)(Y) & =v(Y) \tau(X)-g\left(A_{N} X, F Y\right), \tag{2.15}\\
\left(\nabla_{X} F\right)(Y) & =u(Y) A_{N} X-B(X, Y) U \tag{2.16}
\end{align*}
$$

Differentiate (2.8) with X and use (1.5), (1.7), (2.1)-3 and (2.9)-2, we have

$$
\begin{align*}
& B(X, U)=v\left(A_{\xi}^{*} X\right)=u\left(A_{N} X\right)=C(X, V), \forall X \in \Gamma(T M), \tag{2.17}\\
& \nabla_{X} U=F\left(A_{N} X\right)+\tau(X) U, \quad \nabla_{X} V=F\left(A_{\xi}^{*} X\right)-\tau(X) V \tag{2.18}
\end{align*}
$$

Example 1. Let $\left(\mathbb{R}_{2}^{6}, \bar{g}\right)$ be a 6 -dimensional semi-Euclidean space of index 2 with signature $(-,-,+,+,+,+)$ of the canonical basis $\left(\partial_{0}, \ldots, \partial_{5}\right)$. Consider a Monge hypersurface M of \mathbb{R}_{2}^{6} given by

$$
x_{0}=u_{1}+u_{2}+u_{3} \quad \text { and } \quad x_{i}=u_{i}(1 \leq i \leq 5) .
$$

Then the tangent bundle $T M$ is spanned by

$$
\left\{\partial_{u_{1}}=\partial_{0}+\partial_{1}, \partial_{u_{2}}=\partial_{0}+\partial_{2}, \partial_{u_{3}}=\partial_{0}+\partial_{3}, \partial_{u_{4}}=\partial_{4}, \partial_{u_{5}}=\partial_{5}\right\}
$$

It is easy to check that M is a lightlike hypersurface whose radical distribution $\operatorname{Rad}(T M)$ is spanned by

$$
\xi=\partial_{0}-\partial_{1}+\partial_{2}+\partial_{3}
$$

Let $V=\partial_{0}-\partial_{1}$, then $g(V, V)=-2$ and $g(\xi, V)=-2$. Then the lightlike transversal vector bundle is given by

$$
\operatorname{tr}(T M)=\operatorname{Span}\left\{N=-\frac{1}{4}\left(\partial_{0}-\partial_{1}-\partial_{2}-\partial_{3}\right)\right\}
$$

It follows that the corresponding screen distribution $S(T M)$ is spanned by

$$
\left\{W_{1}=\partial_{0}+\partial_{1}, W_{2}=\partial_{2}-\partial_{3}, W_{3}=\partial_{4}, W_{4}=\partial_{5}\right\}
$$

Since \mathbb{R}_{2}^{6} has complex structure J, we see that $J \xi=W_{1}-W_{2} \in \Gamma(S(T M))$, $J N=-\frac{1}{4}\left\{W_{1}+W_{2}\right\} \in \Gamma(S(T M)), J W_{3}=W_{4}$ and $J W_{4}=-W_{3}$. Thus the almost complex distribution D_{o} is given by $D_{o}=\operatorname{Span}\left\{W_{3}, W_{4}\right\}$.

Theorem 2.1. Let ($M, g, S(T M)$) be a lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. Then we have the following assertions.
(i) If F and V are parallel with respect to the induced connection ∇ on M, then M is totally geodesic in \bar{M} and the 1-form τ vanishes.
(ii) If V and U are parallel with respect to the induced connection ∇ on M, then $S(T M)$ is totally geodesic in M and the 1-form τ vanishes.

Proof. If V is parallel with respect to the induced connection ∇ on M, then, from the second equation of (2.18), we have

$$
J\left(A_{\xi}^{*} X\right)-u\left(A_{\xi}^{*} X\right) N-\tau(X) V=0, \forall X \in \Gamma(T M)
$$

Apply J to the last equation and by using (2.1) and (2.8), we obtain

$$
A_{\xi}^{*} X=u\left(A_{\xi}^{*} X\right) U \quad \text { and } \quad \tau(X)=0, \forall X \in \Gamma(T M) .
$$

Substituting the last equation in (2.17), we have

$$
u\left(A_{N} X\right)=v\left(A_{\xi}^{*} X\right)=g\left(A_{\xi}^{*} X, U\right)=u\left(A_{\xi}^{*} X\right) g(U, U)=0, \forall X \in \Gamma(T M)
$$

(i) If F is parallel with respect to ∇, then, from (2.16), we have

$$
\begin{equation*}
B(X, Y)=u(Y) u\left(A_{N} X\right), \quad \forall X, Y \in \Gamma(T M) \tag{2.19}
\end{equation*}
$$

Thus if V is also parallel, we obtain $B=0$, that is, M is totally geodesic in \bar{M}.
(ii) If U is parallel with respect to ∇, then, from (2.18)-1, we have

$$
J\left(A_{N} X\right)-u\left(A_{N} X\right) N+\tau(X) U=0, \quad \forall X \in \Gamma(T M) .
$$

Apply J to this equation and by using (2.1) and (2.8), we obtain

$$
A_{N} X=u\left(A_{N} X\right) U \quad \text { and } \quad \tau(X)=0, \quad \forall X \in \Gamma(T M) .
$$

Thus if V is also parallel, we obtain $A_{N} X=0$ for all $X \in \Gamma(T M)$. Thus $C=0$ due to (1.12), that is, $S(T M)$ is totally geodesic in M.

Theorem 2.2. Let $(M, g, S(T M))$ be a lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. If F is parallel with respect to the induced connection ∇, then the almost complex distribution D is parallel with respect to the induced connection ∇ and M is locally a product manifold $L_{u} \times M^{\sharp}$, where L_{u} is a null curve tangent to $J(\operatorname{tr}(T M))$ and M^{\sharp} is a leaf of D.

Proof. In general, by using (1.4), (1.7), (1.11) and (2.1), we derive

$$
\begin{align*}
& g\left(\nabla_{X} \xi, J \xi\right)=-g\left(\xi, \bar{\nabla}_{X} J \xi\right)=B(X, V), \quad g\left(\nabla_{X} J \xi, J \xi\right)=0, \tag{2.20}\\
& g\left(\nabla_{X} Y, J \xi\right)=g\left(J Y, \bar{\nabla}_{X} \xi\right)=-g\left(J Y, A_{\xi}^{*} X\right)=-B(X, J Y)
\end{align*}
$$

for all $X \in \Gamma(T M)$ and $Y \in \Gamma\left(D_{o}\right)$. If F is parallel with respect to the induced connection ∇, then, taking $Y=V$ and $Y \in \Gamma\left(D_{o}\right)$ in (2.19) by turns, we have $B(X, V)=0$ and $B(X, Y)=0$ for all $X \in \Gamma(T M)$ respectively. It follow that $g\left(\nabla_{X} \xi, J \xi\right)=g\left(\nabla_{X} J \xi, J \xi\right)=g\left(\nabla_{X} Y, J \xi\right)=0$ due to $J Y \in \Gamma\left(D_{o}\right)$. Thus D is parallel with respect to ∇ and both D and $J(\operatorname{tr}(T M))$ are integrable distributions. Thus we obtain our theorem.

3. Screen conformal lightlike real hypersurfaces

A lightlike hypersurface ($M, g, S(T M)$) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is screen conformal [1] if the shape operators A_{N} and A_{ξ}^{*} of M and $S(T M)$ respectively are related by $A_{N}=\varphi A_{\xi}^{*}$, or equivalently

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{3.1}
\end{equation*}
$$

where φ is a non-vanishing smooth function on a neighborhood \mathcal{U} in M. In particular, if φ is a non-zero constant, M is called screen homothetic [4].
Note 1. For a screen conformal M, since C is symmetric on $\Gamma(S(T M)), S(T M)$ is integrable. Thus M is locally a product manifold $L_{\xi} \times M^{*}$ where L_{ξ} is a null curve tangent to $T M^{\perp}$ and M^{*} is a leaf of $S(T M)$ [2].

From (2.17) and (3.1), we obtain

$$
\begin{equation*}
B(X, U-\varphi V)=0, \quad \forall X \in \Gamma(T M) . \tag{3.2}
\end{equation*}
$$

Theorem 3.1. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. Then the non-null vector field $U-\varphi V \neq 0$ is conjugate to any vector field on M. In particular, $U-\varphi V$ is an asymptotic vector field.

Corollary 1. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. Then the second fundamental form $B($ consequently, $C)$ is degenerate on $\Gamma(S(T M))$.
Proof. Since $B(X, U-\varphi V)=0$ for all $X \in \Gamma(S(T M))$ and $U-\varphi V \in$ $\Gamma(S(T M))$, therefore B is degenerate on $\Gamma(S(T M))$.

Theorem 3.2. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. If M or $S(T M)$ is totally umbilic, then M is totally geodesic in \bar{M} and the leaf M^{*} of $S(T M)$ is totally geodesic in both M and \bar{M}.

Proof. If M is a totally umbilical lightlike real hypersurface of \bar{M}, then there exists a smooth function ρ such that

$$
B(X, Y)=\rho g(X, Y), \quad \forall X, Y \in \Gamma(T M)
$$

From this fact and the equation (3.2), we have

$$
\rho g(X, U-\varphi V)=0, \quad \forall X \in \Gamma(T M)
$$

Replace X by V and U by turns in the last equation, we have $\rho=0$ and $\varphi \rho=0$ respectively. Thus $B=C=0$, that is, M and $S(T M)$ are totally geodesic. By the same method for totally umbilical $S(T M)$, we have $B=C=0$.

Theorem 3.3. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. If one of the set $\{V, U, F\}$ is parallel with respect ∇ on M, then M is totally geodesic in \bar{M} and $S(T M)$ is totally geodesic in both M and \bar{M}. Moreover, if V or U is parallel, then $\tau=0$.

Proof. In the proof of Theorem 2.1, if V is parallel, then $\tau=0, u\left(A_{N} X\right)=0$ and $A_{\xi}^{*} X=u\left(A_{\xi}^{*} X\right) U$ for any $X \in \Gamma(T M)$. Using the second equation of the above relations and the fact that $A_{N}=\varphi A_{\xi}^{*}$, we have

$$
u\left(A_{\xi}^{*} X\right)=u\left(A_{N} X\right) / \varphi=0, \forall X \in \Gamma(T M)
$$

From this and the fact that $A_{\xi}^{*} X=u\left(A_{\xi}^{*} X\right) U$ for all $X \in \Gamma(T M)$, we have $A_{\xi}^{*}=0$. Also $A_{N}=\varphi A_{\xi}^{*}=0$. Thus M and $S(T M)$ are totally geodesic.

If U is parallel, then $\tau=0$ and $A_{N} X=u\left(A_{N} X\right) U$ for any $X \in \Gamma(T M)$. Thus we have $v\left(A_{N} X\right)=0$ for any $X \in \Gamma(T M)$. Using the equation (2.17) and the fact that $A_{N}=\varphi A_{\xi}^{*}$, we have

$$
u\left(A_{N} X\right)=v\left(A_{\xi}^{*} X\right)=v\left(A_{N} X\right) / \varphi=0, \forall X \in \Gamma(T M)
$$

It follow that $A_{N}=0$ and $A_{\xi}^{*}=0$. Thus M and $S(T M)$ are totally geodesic. If F is parallel, then we have (2.19). Replace Y by V in (2.19), we have

$$
u\left(A_{N} X\right)=\varphi u\left(A_{\xi}^{*} X\right)=\varphi B(X, V)=0, \quad \forall X \in \Gamma(T M)
$$

Thus, from (2.19) and (3.1), we have $B=C=0$.
From the equation (2.20) and Theorems 3.2 and 3.3, we have:
Theorem 3.4. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. If (i) M or $S(T M)$ is a totally umbilic, or (ii) one of the set $\{V, U, F\}$ is parallel with respect to ∇, then D is parallel with respect to ∇ and M is locally a product manifold $L_{u} \times M^{\sharp}$, where L_{u} is a null curve tangent to $J(\operatorname{tr}(T M))$ and M^{\sharp} is a leaf of D.

As $\{U, V\}$ is a basis of $\Gamma\left(J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M))\right)$, the vector fields

$$
\begin{equation*}
\mu=U-\varphi V, \quad \nu=U+\varphi V \tag{3.3}
\end{equation*}
$$

form an orthogonal basis of $\Gamma\left(J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M))\right)$. From (3.2), we have

$$
\begin{equation*}
g\left(A_{\xi}^{*} \mu, X\right)=B(\mu, X)=0, \quad g\left(A_{\xi}^{*} \mu, N\right)=0, \quad A_{\xi}^{*} \mu=0 \tag{3.4}
\end{equation*}
$$

that is, μ is an eigenvector field of A_{ξ}^{*} on $S(T M)$ corresponding to the eigenvalue 0 . Let $\mathcal{G}(\mu)=\operatorname{Span}\{\mu\}$. Then $\mathcal{S}(\mu)=D_{o} \oplus_{\text {orth }} \operatorname{Span}\{\nu\}$ is a complementary vector subbundle to $\mathcal{G}(\mu)$ in $S(T M)$ and we have the following decomposition

$$
\begin{equation*}
S(T M)=\mathcal{G}(\mu) \oplus_{\text {orth }} \mathcal{S}(\mu) \tag{3.5}
\end{equation*}
$$

Theorem 3.5. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. Then the non-null vector field μ is parallel with respect to ∇ if and only if the 1 -form τ vanishes and the conformal factor φ is a constant.

Proof. From (2.18), (3.3) and the linearity of F, we have

$$
\begin{equation*}
\nabla_{X} \mu=\tau(X) \nu-X[\varphi] V, \quad \forall X \in \Gamma(T M) \tag{3.6}
\end{equation*}
$$

due to $A_{N}=\varphi A_{\xi}^{*}$. Thus we see that μ is parallel if and only if

$$
\tau(X) U-\{X[\varphi]-\varphi \tau(X)\} V=0, \quad \forall X \in \Gamma(T M)
$$

Taking the scalar product with V and U in turns, we get assertion.
Note 2. From (2.18) and (3.4), we have

$$
\nabla_{X} \nu=2 F\left(A_{N} X\right)+\tau(X) \mu+X[\varphi] V, \quad \forall X \in \Gamma(T M) .
$$

Thus, using the fact $g\left(F\left(A_{N} X\right), V\right)=g\left(F\left(A_{N} X\right), U\right)=0$, we show that ν is parallel if and only if $\tau=0$ on M, φ is a constant and both U and V are parallel. Moreover if ν is parallel, then μ is also parallel and $B=C=0$.
Theorem 3.6. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. If μ is parallel with respect to ∇, then M is locally a product manifold $L_{\xi} \times L_{\mu} \times M^{\natural}$, where L_{ξ} and L_{μ} are null and non-null geodesic tangent to $T M^{\perp}$ and $\mathcal{G}(\mu)$ respectively and M^{\natural} is a leaf of $\mathcal{S}(\mu)$. Moreover, M is screen homothetic.
Proof. In general, using (3.6), for $X \in \Gamma(\mathcal{S}(\mu))$ and $Y \in \Gamma\left(D_{o}\right)$, we derive

$$
\begin{align*}
& g\left(\nabla_{X} Y, \mu\right)=g\left(\bar{\nabla}_{X} Y, \mu\right)=-g\left(Y, \nabla_{X} \mu\right)=0 \tag{3.7}\\
& g\left(\nabla_{Y} \nu, \mu\right)=-g\left(\nu, \nabla_{Y} \mu\right)=Y[\varphi]-2 \varphi \tau(Y) \tag{3.8}
\end{align*}
$$

If μ is parallel, then $g\left(\nabla_{X} Y, \mu\right)=g\left(\nabla_{X} \nu, \mu\right)=0$. Thus $\mathcal{S}(\mu)$ is a integrable distribution. From this fact and Note 1, we obtain our theorem.

Corollary 2. Let ($M, g, S(T M)$) be a screen conformal lightlike real hypersurface of an indefinite Kaehler manifold \bar{M}. If μ is parallel with respect to ∇, then M is locally a product manifold $L_{\mu} \times M^{b}$, where L_{μ} is a non-null geodesic tangent to $\mathcal{G}(\mu)$ and M^{b} is a leaf of $\mathcal{R}(\mu)=D_{o} \oplus_{\text {orth }} \operatorname{Span}\{\xi, \nu\}$.
Proof. From (1.1) and (3.5), we have $T M=\mathcal{G}(\mu) \oplus_{\text {orth }} \mathcal{R}(\mu)$. For any $X \in$ $\Gamma(\mathcal{R}(\mu))$ and $Y \in \Gamma\left(D_{o}\right)$, we get

$$
\begin{aligned}
& g\left(\nabla_{Y} \xi, \mu\right)=-g\left(A_{\xi}^{*} Y, \mu\right)=-g\left(Y, A_{\xi}^{*} \mu\right)=0, \\
& g\left(\nabla_{Y} \nu, \mu\right)=-g\left(\nu, \nabla_{Y} \mu\right)=Y[\varphi]-2 \varphi \tau(Y),
\end{aligned}
$$

$$
g\left(\nabla_{X} Y, \mu\right)=g\left(\bar{\nabla}_{X} Y, \mu\right)=-g\left(Y, \nabla_{X} \mu\right)=0
$$

Thus the distribution $\mathcal{R}(\mu)$ is integrable. We have our assertion.
Theorem 3.7. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite complex space form $\bar{M}(c)$. Then we have $c=0$. In particular, the ambient manifold $\bar{M}(c)$ is a semi-Euclidean space.

Proof. By using (1.15) and (2.2), we have

$$
\begin{align*}
& \frac{c}{4}\{u(X) \bar{g}(J Y, Z)-u(Y) \bar{g}(J X, Z)+2 u(Z) \bar{g}(X, J Y)\} \tag{3.9}\\
= & \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+B(Y, Z) \tau(X)-B(X, Z) \tau(Y)
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Using this, (1.16), (1.18) and (3.2), we obtain

$$
\begin{align*}
& \frac{c}{4}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)+v(X) \bar{g}(J Y, P Z) \tag{3.10}\\
&\quad-v(Y) \bar{g}(J X, P Z)+2 v(P Z) \bar{g}(X, J Y)\} \\
&=\{X[\varphi]-2 \varphi \tau(X)\} B(Y, P Z)-\{Y[\varphi]-2 \varphi \tau(Y)\} B(X, P Z) \\
&+\frac{c}{4} \varphi\{u(X) \bar{g}(J Y, P Z)-u(Y) \bar{g}(J X, P Z)+2 u(P Z) \bar{g}(X, J Y)\} .
\end{align*}
$$

Replacing Y by ξ in (3.10), we obtain

$$
\begin{align*}
& \{\xi[\varphi]-2 \varphi \tau(\xi)\} B(X, P Z) \tag{3.11}\\
= & \frac{c}{4}\{g(X, P Z)+v(X) u(P Z)+2 u(X) v(P Z)-3 \varphi u(X) u(P Z)\} .
\end{align*}
$$

Taking $X=V ; P Z=U$ and $X=U ; P Z=V$, we have

$$
\begin{equation*}
\{\xi[\varphi]-2 \varphi \tau(\xi)\} B(V, U)=\frac{1}{2} c, \quad\{\xi[\varphi]-2 \varphi \tau(\xi)\} B(U, V)=\frac{3}{4} c \tag{3.12}
\end{equation*}
$$

respectively. From the two equation of (3.12), we show that $c=0$. Therefore, $\bar{M}(c)$ is a semi-Euclidean space.

Corollary 3. There exist no screen conformal lightlike real hypersurfaces M of indefinite complex space form $\bar{M}(c)$ with $c \neq 0$.

The type number $t^{*}(p)$ of M at a point $p \in M$ is the rank of the shape operator A_{ξ}^{*} at p. Then, from (3.7) and (3.8), we obtain:

Theorem 3.8. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite complex space form $\bar{M}(c)$ such that $t^{*}(p)>1$ for any $p \in M$. Then M is locally a product manifold $L_{\xi} \times L_{\mu} \times M^{\natural}$, where L_{ξ} and L_{μ} are null and non-null curve tangent to $T M^{\perp}$ and $\mathcal{G}(\mu)$ respectively and M^{\natural} is a leaf of $\mathcal{S}(\mu)$.

Proof. First, for any $X \in \Gamma(\mathcal{S}(\mu))$ and $Y \in \Gamma\left(D_{o}\right)$, since $g(Y, U)=g(Y, V)=0$ for $Y \in \Gamma\left(D_{o}\right)$, we show that

$$
\begin{aligned}
g\left(\nabla_{X} Y, \mu\right) & =g\left(\bar{\nabla}_{X} Y, \mu\right)=-g\left(Y, \bar{\nabla}_{X} \mu\right)=-g\left(Y, \nabla_{X} \mu\right) \\
& =X[\varphi] g(Y, V)-\tau(X) g(Y, \nu)=-\tau(X)\{g(Y, U)+\varphi g(Y, V)\}=0 .
\end{aligned}
$$

Thus (3.7) holds. Next, from the equation (3.10) with $c=0$, we obtain

$$
\{X[\varphi]-2 \varphi \tau(X)\} A_{\xi}^{*} Y=\{Y[\varphi]-2 \varphi \tau(Y)\} A_{\xi}^{*} X
$$

Suppose there exists a vector field $X_{o} \in \Gamma(T M)$ such that $X_{o}[\varphi]-2 \varphi \tau\left(X_{o}\right) \neq 0$. Then $A_{\xi}^{*} Y=f A_{\xi}^{*} X_{o}$ for any $Y \in \Gamma(T M)$, where f is a smooth function. It follows that the rank of A_{ξ}^{*} is 1 . It is a contradiction as rank $A_{\xi}^{*}>1$. Consequently, we have $X[\varphi]-2 \varphi \tau(X)=0$ for all $X \in \Gamma(T M)$ on \mathcal{U}. Thus (3.8) also holds. Therefore $\mathcal{S}(\mu)$ is integrable distribution by (3.7) and (3.8). Consequently, we have our theorem.

4. Screen conformal Einstein hypersurfaces

Let $R^{(0,2)}$ denote the induced Ricci type tensor of M given by

$$
\begin{equation*}
R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\} \tag{4.1}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$. Consider the induced quasi-orthonormal frame field $\left\{\xi ; W_{a}\right\}$ on M such that $\operatorname{Rad}(T M)=\operatorname{Span}\{\xi\}$ and $S(T M)=\operatorname{Span}\left\{W_{a}\right\}$. Using this quasi-orthonormal frame field and the equation (3.1), we obtain

$$
\begin{equation*}
R^{(0,2)}(X, Y)=\sum_{a=1}^{m} \epsilon_{a} g\left(R\left(W_{a}, X\right) Y, W_{a}\right)+\bar{g}(R(\xi, X) Y, N) \tag{4.2}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $\epsilon_{a}=g\left(W_{a}, W_{a}\right)$ is the sign of W_{a}. In general, the induced Ricci type tensor $R^{(0,2)}$, defined by the method of the geometry of the non-degenerate submanifolds [8], is not symmetric [3, 5]. Therefore $R^{(0,2)}$ has no geometric or physical meaning similar to the Ricci curvature of the nondegenerate submanifolds and it is just a tensor quantity. Hence we need the following definition: A tensor field $R^{(0,2)}$ of lightlike submanifolds M is called its induced Ricci tensor if it is symmetric. A symmetric $R^{(0,2)}$ tensor will be denoted by Ric. If M is a screen conformal lightlike real hypersurface of a complex space form $\bar{M}(c)$, then $c=0$. Using (1.14) and (1.16), we have

$$
\begin{equation*}
R^{(0,2)}(X, Y)=\varphi\left\{B(X, Y) \operatorname{tr} A_{\xi}^{*}-g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)\right\}, \forall X, Y \in \Gamma(T M) \tag{4.3}
\end{equation*}
$$

Theorem 4.1. Let $(M, g, S(T M))$ be a screen conformal lightlike real hypersurface of an indefinite complex space form $\bar{M}(c)$. Then the Ricci type tensor $R^{(0,2)}$ is a symmetric Ricci tensor Ric.

Note 3. Suppose the Ricci type tensor $R^{(0,2)}$ is symmetric. Then there exists a pair $\{\xi, N\}$ on \mathcal{U} such that the corresponding 1-form τ vanishes [2]. We call such a pair a distinguished null pair [5] of M. Although, in general, $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $S(T M)^{\sharp}=T M / \operatorname{Rad}(T M)$ considered by Kupeli [7]. Thus all $S(T M)$ are mutually isomorphic. For this reason, in the sequel, let $(M, g, S(T M))$ be a screen homothetic lightlike real hypersurface equipped with the distinguished null pair $\{\xi, N\}$ of an indefinite complex space form $(\bar{M}(c), \bar{g})$.

Theorem 4.2. Let $(M, g, S(T M))$ be a screen homothetic lightlike real hypersurface of an indefinite complex space form $\bar{M}(c)$. Then M is locally a product manifold $L_{\xi} \times L_{\mu} \times M^{\natural}$, where L_{ξ} and L_{μ} are null and non-null geodesics respectively and M^{\natural} is a leaf of some non-degenerate distribution.

Proof. Since M is a screen homothetic lightlike real hypersurface equipped with a distinguished null pair $\{\xi, N\}$, from (1.7), (1.13) and (3.6), we have $\nabla_{\xi} \xi=\nabla_{\mu} \mu=0$. In particular, μ is a parallel vector field with respect to ∇ due to (3.6). Thus, by Theorem 3.6, we have our theorem.

Theorem 4.3. Any screen conformal Einstein lightlike real hypersurface of an indefinite complex space form $\bar{M}(c)$ is Ricci flat.

Proof. Since M is a screen conformal lightlike real hypersurface of an indefinite complex space form $\bar{M}(c)$, we get $c=0$. The induced tensor $R^{(0,2)}$ is a symmetric Ricci tensor Ric by (4.3). Let M be an Einstein manifold, that is, $R^{(0,2)}=\gamma g$ for some constant γ. Then the equation (4.3) reduces to

$$
\begin{equation*}
g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)-\alpha g\left(A_{\xi}^{*} X, Y\right)-\gamma \varphi^{-1} g(X, Y)=0 \tag{4.4}
\end{equation*}
$$

where $\alpha=\operatorname{tr} A_{\xi}^{*}$ is trace of A_{ξ}^{*}. Put $X=Y=\mu$ in (4.4) and using the fact that $A_{\xi}^{*} \mu=0$ due to (3.4), we have $\gamma=0$. Thus M is Ricci flat.

Theorem 4.4. Let $(M, g, S(T M))$ be a screen homothetic Einstein lightlike real hypersurface of an indefinite complex space form $\bar{M}(c)$ of index 2. Then M is locally a product manifold $L_{\xi} \times L_{\mu} \times M^{\natural}$ or $L_{\xi} \times L_{\mu} \times L_{\alpha} \times M^{0}$, where L_{ξ}, L_{μ} and L_{α} are null geodesic, timelike geodesic and spacelike curve respectively and M^{\natural} and M^{0} are Euclidean spaces.

Proof. Let $\mu=\frac{1}{\sqrt{2 \epsilon \varphi}}\{U-\varphi V\}$, where $\epsilon=\operatorname{sgn} \varphi$. Then μ is a unit timelike eigenvector field of A_{ξ}^{*} corresponding to the eigenvalue 0 by (3.4) and $\mathcal{S}(\mu)$ is an integrable Riemannian distribution by Theorem 4.2 , due to $q=2$. Since $g\left(A_{\xi}^{*} X, N\right)=0$ and $g\left(A_{\xi}^{*} X, \mu\right)=0, A_{\xi}^{*}$ is $\Gamma(\mathcal{S}(\mu))$-valued real self-adjoint operator. Thus A_{ξ}^{*} have $(2 m-3) \equiv n$ real orthonormal eigenvector fields in $\mathcal{S}(\mu)$ and is diagonalizable. Consider a frame field of eigenvectors $\left\{\mu, e_{1}, \ldots, e_{n}\right\}$ of A_{ξ}^{*} on $S(T M)$ such that $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal frame field of A_{ξ}^{*} on $\mathcal{S}(\mu)$. Then $A_{\xi}^{*} e_{i}=\lambda_{i} e_{i}(1 \leq i \leq n)$. Put $X=Y=e_{i}$ in (4.4) with $\gamma=0$, we show that each eigenvalue λ_{i} of A_{ξ}^{*} is a solution of the equation

$$
\begin{equation*}
x(x-\alpha)=0 \tag{4.5}
\end{equation*}
$$

The equation (4.5) has at most two distinct real solutions 0 and α on \mathcal{U}. Assume that there exists $p \in\{0, \ldots, n\}$ such that $\lambda_{1}=\cdots=\lambda_{p}=0$ and $\lambda_{p+1}=\cdots=$ $\lambda_{n}=\alpha$, by renumbering if necessary. Then we have

$$
\alpha=\operatorname{tr} A_{\xi}^{*}=(n-p) \alpha
$$

If $\alpha=0$, then $A_{\xi}^{*} X=0$ for all $X \in \Gamma(T M)$. Also we have $A_{N} X=0$ for all $X \in \Gamma(T M)$. Thus M and $S(T M)$ are totally geodesic. From (1.14) and
(1.17), we have $R^{*}(X, Y) Z=\bar{R}(X, Y) Z=0$ for all $X, Y, Z \in \Gamma(S(T M))$. Thus M is locally a product manifold $L_{\xi} \times\left(M^{*}=L_{\mu} \times M^{\natural}\right)$, where L_{ξ} and L_{μ} are null and timelike geodesic tangent to $T M^{\perp}$ and $\mathcal{G}(\mu)$ respectively and the leaf M^{*} of $S(T M)$ is a Minkowski space. Since $\nabla_{X} \mu=0$ and

$$
g\left(\nabla_{X}^{*} Y, \mu\right)=-g\left(Y, \nabla_{X}^{*} \mu\right)=-g\left(Y, \nabla_{X} \mu\right)=0
$$

for all $X, Y, Z \in \Gamma(S(T M))$, we have $\nabla_{X}^{*} Y \in \Gamma(\mathcal{S}(\mu))$ and $R^{*}(X, Y) Z \in$ $\Gamma(\mathcal{S}(\mu))$. This imply $\nabla_{X}^{*} Y=Q\left(\nabla_{X}^{*} Y\right)$, that is, M^{\natural} is a totally geodesic and $R^{*}(X, Y) Z=Q\left(R^{*}(X, Y) Z\right)=0$, where Q is a projection morphism of $S(T M)$ on $\mathcal{S}(\mu)$ with respect to the decomposition (3.5). Thus M^{\natural} is a Euclidean space.

If $\alpha \neq 0$, then $p=n-1$. Consider the following two distributions on $\mathcal{S}(\mu)$;

$$
\begin{aligned}
& \Gamma\left(E_{0}\right)=\left\{X \in \Gamma(\mathcal{S}(\mu)) \mid A_{\xi}^{*} X=0\right\} \\
& \Gamma\left(E_{\alpha}\right)=\left\{X \in \Gamma(\mathcal{S}(\mu)) \mid A_{\xi}^{*} X=\alpha X\right\}
\end{aligned}
$$

Then we know that the distributions E_{0} and E_{α} are mutually orthogonal nondegenerate subbundle of $\mathcal{S}(\mu)$, of $\operatorname{rank}(n-1)$ and 1 respectively, satisfy $\mathcal{S}(\mu)=$ $E_{0} \oplus_{\text {orth }} E_{\alpha}$. From (4.4), we get $A_{\xi}^{*}\left(A_{\xi}^{*}-\alpha Q\right)=0$. Using this equation, we have $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(E_{\alpha}\right)$ and $\operatorname{Im}\left(A_{\xi}^{*}-\alpha Q\right) \subset \Gamma\left(E_{0}\right)$. For any $X, Y \in \Gamma\left(E_{0}\right)$ and $Z \in \Gamma(\mathcal{S}(\mu))$, we get $\left(\nabla_{X} B\right)(Y, Z)=-g\left(A_{\xi}^{*} \nabla_{X} Y, Z\right)$. Use this and the fact $\left(\nabla_{X} B\right)(Y, Z)=\left(\nabla_{Y} B\right)(X, Z)$, we have $g\left(A_{\xi}^{*}[X, Y], Z\right)=0$. If we take $Z \in$ $\Gamma\left(E_{\alpha}\right)$, since $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(E_{\alpha}\right)$ and E_{α} is non-degenerate, we have $A_{\xi}^{*}[X, Y]=0$. Thus $[X, Y] \in \Gamma\left(E_{0}\right)$ and E_{0} is integrable. Thus M is locally a product manifold $L_{\xi} \times\left(M^{*}=L_{\mu} \times L_{\alpha} \times M^{0}\right)$, where L_{α} is a spacelike curve and M^{0} is an ($n-1$)-dimensional Riemannian manifold satisfy $A_{\xi}^{*}=0$. From (1.14) and (1.18), we have $R^{*}(X, Y) Z=\bar{R}(X, Y) Z=0$ for all $X, Y, Z \in \Gamma\left(E_{0}\right)$. Since $g\left(\nabla_{X}^{*} Y, \mu\right)=0$ and $g\left(\nabla_{X}^{*} Y, e_{n}\right)=-g\left(Y, \nabla_{X} e_{n}\right)=0$ for all $X, Y \in \Gamma\left(E_{0}\right)$ because $\nabla_{X} W \in \Gamma\left(E_{\alpha}\right)$ for $X \in \Gamma\left(E_{0}\right)$ and $W \in \Gamma\left(E_{\alpha}\right)$. In fact, from (1.15) such that $c=\tau=0$, we get

$$
g\left(\left\{\left(A_{\xi}^{*}-\alpha Q\right) \nabla_{X} W-A_{\xi}^{*} \nabla_{W} X\right\}, Z\right)=0
$$

for all $X \in \Gamma\left(E_{0}\right), W \in \Gamma\left(E_{\alpha}\right)$ and $Z \in \Gamma(\mathcal{S}(\mu))$. Using the fact that $\mathcal{S}(\mu)$ is non-degenerate distribution, we have $\left(A_{\xi}^{*}-\alpha Q\right) \nabla_{X} W=A_{\xi}^{*} \nabla_{W} X$. Since the left term of this equation is in $\Gamma\left(E_{0}\right)$ and the right term is in $\Gamma\left(E_{\alpha}\right)$ and $E_{0} \cap E_{\alpha}=\{0\}$, we have $\left(A_{\xi}^{*}-\alpha Q\right) \nabla_{X} W=0$ and $A_{\xi}^{*} \nabla_{W} X=-X[\varphi] W$. This imply that $\nabla_{X} W \in \Gamma\left(E_{\alpha}\right)$. Thus $\nabla_{X}^{*} Y=\pi \nabla_{X}^{*} Y$ for all $X, Y \in \Gamma\left(E_{0}\right)$, where π is the projection morphism of $\Gamma(S(T M))$ on $\Gamma\left(E_{0}\right)$ and $\pi \nabla^{*}$ is the induced connection on E_{0}. This imply that the leaf M^{0} of E_{0} is totally geodesic. As $g\left(R^{*}(X, Y) Z, \mu\right)=0$ and $g\left(R^{*}(X, Y) Z, e_{n}\right)=0$ for all $X, Y, Z \in \Gamma\left(E_{0}\right)$, we have $R^{*}(X, Y) Z=\pi R^{*}(X, Y) Z \in \Gamma\left(E_{0}\right)$ and the curvature tensor πR^{*} of E_{0} is flat. Thus M^{0} is a Euclidean space.

References

[1] C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
[2] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[3] K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
[4] _, A classification of Einstein lightlike hypersurfaces of a Lorentzian space form, to appear in J. Geom. Phys.
[5] D. H. Jin, Screen conformal Einstein lightlike hypersurfaces of a Lorentzian space form, submitted in Commun. Korean Math. Soc.
[6] _ Screen conformal lightlike hypersurfaces of a semi-Riemannian space form, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 16 (2009), no. 3, 271-276.
[7] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
[8] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

Department of Mathematics
Dongguk University
Kyonguu 780-714, Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received November 2, 2008; Revised June 23, 2009.
 2000 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. lightlike real hypersurface, screen conformal, indefinite complex space form.

