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MEROMORPHIC FUNCTIONS
SHARING A NONZERO POLYNOMIAL CM

Xiao-Min Li and Ling Gao

Abstract. In this paper, we prove that if fnf ′ − P and gng′ − P share
0 CM, where f and g are two distinct transcendental meromorphic func-
tions, n ≥ 11 is a positive integer, and P is a nonzero polynomial such that
its degree γP ≤ 11, then either f = c1ecQ and g = c2e−cQ, where c1, c2
and c are three nonzero complex numbers satisfying (c1c2)n+1c2 = −1,
Q is a polynomial such that Q =

R z
0 P (η)dη, or f = tg for a complex

number t such that tn+1 = 1. The results in this paper improve those
given by M. L. Fang and H. L. Qiu, C. C. Yang and X. H. Hua, and other
authors.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [7], [10], and [17]. It will
be convenient to let E denote any set of positive real numbers of finite lin-
ear measure, not necessarily the same at each occurrence. For a nonconstant
meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic of
h and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)} as r → ∞ and
r 6∈ E.

Let f and g be two nonconstant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and
g − a have the same zeros with the same multiplicities. Similarly, we say that
f and g share a IM, provided that f −a and g−a have the same zeros ignoring
multiplicities. In addition, we say that f and g share ∞ CM, if 1/f and 1/g
share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM
(see [16]). We say that a is a small function of f, if a is a meromorphic function
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satisfying T (r, a) = S(r, f) (see [16]). In addition, we need the following two
definitions.

Definition 1.1 (see [1, Definition 1]). Let p be a positive integer and a ∈
C ∪ {∞}. Then by Np)(r, 1/(f − a)) we denote the counting function of those
a-points of f (counted with proper multiplicities) whose multiplicities are not
greater than p, by Np)(r, 1/(f−a)) we denote the corresponding reduced count-
ing function (ignoring multiplicities). By N(p(r, 1/(f−a)) we denote the count-
ing function of those a-points of f (counted with proper multiplicities) whose
multiplicities are not less than p, by N (p(r, 1/(f − a)) we denote the corre-
sponding reduced counting function (ignoring multiplicities).

Definition 1.2. Let a be an any value in the extended complex plane, and let
k be an arbitrary nonnegative integer. We define

(1.1) δk(a, f) = 1− lim sup
r→∞

Nk

(
r, 1

f−a

)

T (r, f)
,

where
(1.2)

Nk(r, 1/(f − a)) = N

(
r,

1
f − a

)
+ N (2

(
r,

1
f − a

)
+ · · ·+ N (k

(
r,

1
f − a

)
.

Remark 1.1. From (1.1) and (1.2) we have 0 ≤ δk(a, f) ≤ δk−1(a, f) ≤
δ1(a, f) ≤ Θ(a, f) ≤ 1.

In 1959, W. K. Hayman proved that if f is a transcendental meromor-
phic function and n ≥ 3 is a positive integer, then fnf ′ = 1 has infinitely
many solutions (see [8, Corollary of Theorem 9]). In 1995, W. Bergweiler and
A. Eremenko, H. H. Chen and M. L. Fang, L. Zalcman respectively proved the
following result:

Theorem A (see [2, Theorem 2], [4, Theorem 1] and [19]). Let f be a transcen-
dental meromorphic function, and let n be a positive integer. Then fnf ′ = 1
has infinitely many solutions.

In 2000, M. L. Fang proved the following result:

Theorem B (see [5, Theorem 2]). Let f be a transcendental meromorphic
function, and let n be a positive integer. Then fnf ′−z = 0 has infinitely many
solutions.

In 2003, W. Bergweiler and X. C. Pang proved the following result:

Theorem C (see [3, Theorem 1.1]). Let f be a transcendental meromorphic
function, and let R 6≡ 0 be a rational function. If all zeros and poles of f are
multiple, except possibly finitely many, then f ′ − R = 0 has infinitely many
solutions.

From Theorem B we get the following result:
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Theorem D. Let f be a transcendental meromorphic function, and let P 6≡ 0
be a polynomial, and let n be a positive integer. Then fnf ′−P = 0 has infinitely
many solutions.

In 1997, C. C. Yang and X. H. Hua proved the following result, which cor-
responded to Theorem A.

Theorem E (see [15, Theorem 1]). Let f and g be two nonconstant meromor-
phic functions, and let n ≥ 11 be a positive integer. If fnf ′ and gng′ share 1
CM, then either f = c1e

cz and g = c2e
−cz, where c1, c2 and c are three nonzero

complex numbers satisfying (c1c2)n+1c2 = −1, or f = tg for a complex number
t such that tn+1 = 1.

In 2000, M. L. Fang and H. L. Qiu proved the following result, which corre-
sponded to Theorem B.

Theorem F (see [6, Theorem 1]). Let f and g be two nonconstant meromorphic
functions, and let n ≥ 11 be a positive integer. If fnf ′ − z and gng′ − z share
0 CM, then either f = c1e

cz2
and g = c2e

−cz2
, where c1, c2 and c are three

nonzero complex numbers satisfying 4(c1c2)n+1c2 = −1, or f = tg for a complex
number t such that tn+1 = 1.

Regarding Theorem D and Theorem F, it is natural to ask the following
question:

Question 1.1. Is there a corresponding uniqueness theorem to Theorem D ?

In this paper, we will prove the following two theorems, which correspond
to Theorem D, improve Theorems A-C and Theorem F, and deal with Ques-
tion 1.1.

Theorem 1.1. Let f and g be two transcendental meromorphic functions, let
n ≥ 11 be a positive integer, and let P 6≡ 0 be a polynomial with its degree
γP ≤ 11. If fnf ′ − P and gng′ − P share 0 CM, then either f = tg for a
complex number t satisfying tn+1 = 1, or f = c1e

cQ and g = c2e
−cQ, where c1,

c2 and c are three nonzero complex numbers satisfying (c1c2)n+1c2 = −1, Q is
a polynomial satisfying Q =

∫ z

0
P (η)dη.

Theorem 1.2. Let f and g be two transcendental meromorphic functions, let
n ≥ 15 be a positive integer, and let P 6≡ 0 be a polynomial. If (fn(f −1))′−P
and (gn(g − 1))′ − P share 0 CM and Θ(∞, f) > 2/n, then f = g.

2. Some lemmas

Lemma 2.1 (see [18, Proof of Lemma 1]). Let f be a nonconstant meromorphic
function, let k be a positive integer, and let ϕ be a small function of f such
that ϕ 6≡ 0,∞. Then

T (r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
f (k) − ϕ

)
−N

(
r,

1

( f(k)

ϕ )′

)
+ S(r, f).
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Lemma 2.2 (see [9, Proof of Lemma 2.3]). Let f be a nonconstant meromor-
phic function, and let k and p be two positive integers. Then

Np

(
r,

1
f (k)

)
≤ Np+k

(
r,

1
f

)
+ kN(r, f) + S(r, f).

Lemma 2.3. Let f and g be two transcendental meromorphic functions such
that f (k) − P and g(k) − P share 0 CM, where k is a positive integer, P 6≡ 0 is
a polynomial. If

(2.1)
∆1 = (k + 2)Θ(∞, f) + 2Θ(∞, g) + Θ(0, f) + Θ(0, g)

+ δk+1(0, f) + δk+1(0, g) > k + 7

and

(2.2)
∆2 = (k + 2)Θ(∞, g) + 2Θ(∞, f) + Θ(0, g) + Θ(0, f)

+ δk+1(0, g) + δk+1(0, f) > k + 7,

then either f (k)g(k) = P 2 or f = g.

Proof. From the condition that f and g are transcendental meromorphic func-
tions we know that f (k) and g(k) are transcendental meromorphic functions.
Let

(2.3) F =
f (k)

P
and G =

g(k)

P
,

and let

(2.4) h =
(

F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
.

Let z0 6∈ {z : P (z) = 0} be a common simple zero of f (k) − P and g(k) − P.
Then it follows from (2.3) that z0 is a common simple zero of F − 1 and G− 1.
Moreover, from (2.3) and by calculating we get h(z0) = 0.

Let z1 6∈ {z : P (z) = 0} be a simple pole of F. Then by calculating we see
that F ′′/F ′ − 2F ′/(F − 1) is analytic at z1. Similarly, if z2 6∈ {z : P (z) = 0}
is a simple pole of G, then by calculating we see that G′′/G′ − 2G′/(G− 1) is
analytic at z2.

Let z3 6∈ {z : P (z) = 0} be a pole of h. Then from (2.3)–(2.4) and the above
analysis we see that z3 is possible to be an element of one of the following sets:

(i) S1 = {z : f(z) = ∞} ∪ {z : g(z) = ∞};
(ii) S2 = {z : f(z) = 0 and f (k+1)(z) 6= 0,∞};
(iii) S3 = {z : g(z) = 0 and g(k+1)(z) 6= 0,∞};
(iv) S4 = {z : F ′(z) = 0 and f(z)(F (z)− 1) 6= 0,∞};
(iv) S5 = {z : G′(z) = 0 and g(z)(G(z)− 1) 6= 0,∞}.
Next we denote by N0(r, 1/F ′) the counting function of those zeros of F ′

that are not the zeros of f(F − 1), denote by N0(r, 1/F ′) the reduced form of
N0(r, 1/F ′), and denote by N (1,1)(r, 1/F ) the reduced counting function of the
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common simple zeros of F − 1 and G − 1. Similarly, N0(r, 1/G′), N0(r, 1/G′)
and N (1,1)(r, 1/G) have the same meanings. From above analysis and (2.4) we
get

N(r, h) ≤ N (2 (r, F ) + N (2(r,G) + N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ N0

(
r,

1
F ′

)

+ N0

(
r,

1
G′

)
+ O(log r)

= N(r, f) + N(r, g) + N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ N0

(
r,

1
F ′

)
(2.5)

+ N0

(
r,

1
G′

)
+ O(log r).

From the condition that f is a transcendental meromorphic function we get

(2.6) T (r, P ) = o{T (r, f)}.
Suppose that z4 6∈ {z : P (z) = 0} is a zero of f with its multiplicity l ≥ k + 2.
Then it follows from (2.3) that z0 is a zero of F ′1 with its multiplicity l−k−1 ≥ 1.
Thus it follows from (2.3) and Lemma 2.1 that
(2.7)

T (r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
F − 1

)
−N

(
r,

1
F ′

)
+ S(r, f)

≤ N(r, f) + Nk+1

(
r,

1
f

)
+ N

(
r,

1
F − 1

)
−N0

(
r,

1
F ′

)
+ S(r, f).

Similarly

(2.8) T (r, g) ≤ N(r, g)+Nk+1

(
r,

1
g

)
+N

(
r,

1
G− 1

)
−N0

(
r,

1
G′

)
+S(r, g).

From (2.3)-(2.5) and the condition that f (k) − P and g(k) − P share 0 CM we
get

N

(
r,

1
F − 1

)
+ N

(
r,

1
G− 1

)

≤ N (1,1)

(
r,

1
F − 1

)
+ N

(
r,

1
F − 1

)
+ O(log r)

≤ N (1,1)

(
r,

1
F − 1

)
+ T (r, F ) + O(log r)

≤ N

(
r,

1
h

)
+ T (r, f (k)) + O(log r)(2.9)

≤ T (r, h) + T (r, f) + kN(r, f) + O(log r) + S(r, f)

≤ N(r, h) + T (r, f) + kN(r, f) + S(r, f)
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≤ (k + 1)N(r, f) + N(r, g) + N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ T (r, f)

+ N0

(
r,

1
F ′

)
+ N0

(
r,

1
G′

)
+ S(r, f).

From (2.7)-(2.9) we get

(2.10)
T (r, g) ≤ (k + 2)N (r, f) + 2N(r, g) + Nk+1

(
r,

1
f

)
+ Nk+1

(
r,

1
g

)

+ N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ S(r, f) + S(r, g).

Similarly

(2.11)
T (r, f) ≤ (k + 2)N(r, g) + 2N(r, f) + Nk+1

(
r,

1
g

)
+ Nk+1

(
r,

1
f

)

+ N

(
r,

1
g

)
+ N

(
r,

1
f

)
+ S(r, f) + S(r, g).

Suppose that there exists a subset I ⊆ R+ satisfying mes I = ∞ such that

(2.12) T (r, f) ≤ T (r, g) (r ∈ I).

Then it follows from (2.10) and (2.12) that

∆1 = (k + 2)Θ(∞, f) + 2Θ(∞, g) + Θ(0, f) + Θ(0, g)

+ δk+1(0, f) + δk+1(0, g) ≤ k + 7,

which contradicts (2.1). Similarly, if there exists a subset I ⊆ R+ satisfying
mes I = ∞ such that

(2.13) T (r, g) ≤ T (r, f) (r ∈ I),

from (2.11) and (2.13) we get ∆2 ≤ k +7, which contradicts (2.2). Thus h = 0,
and so it follows from (2.4) that

(2.14)
F ′′

F ′
− 2F ′

F − 1
=

G′′

G′
− 2G′

G− 1
.

From (2.14) we get

(2.15)
1

F − 1
=

bG + a− b

G− 1
,

where and in what follows, a and b are two finite complex numbers.
We discuss the following two cases.
Case 1. Suppose that b 6= 0 and a = b. If b = −1, from (2.3) and (2.15) we

get f (k)g(k) = P 2, which reveals the conclusion of Lemma 2.3. If b 6= −1, then
(2.15) can be rewritten as

(2.16)
1
F

=
bG

(1 + b)G− 1
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or

(2.17) G =
−1
b
· 1
F − (1 + b)/b

.

From (2.3), (2.16), and (2.17) we get

(2.18) N

(
r,

1
G− 1/(b + 1)

)
= N

(
r,

1
f (k)

)
+ O(log r)

and

(2.19) N

(
r,

1
F − (1 + b)/b

)
= N(r, g) + O(log r).

From (2.3), (2.18), (2.19), Lemma 2.1, Lemma 2.2 and in the same manner as
in the proof of (2.7) we get
(2.20)

T (r, g) ≤ N(r, g) + N

(
r,

1
g

)
+ N

(
r,

1
G− 1/(1 + b)

)
−N

(
r,

1
G′

)
+ S(r, g)

≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N

(
r,

1
f (k)

)
+ O(log r) + S(r, g)

≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N1

(
r,

1
f (k)

)
+ O(log r) + S(r, g)

≤ N(r, g) + Nk+1

(
r,

1
g

)
+ Nk+1

(
r,

1
f

)
+ kN(r, f) + S(r, f) + S(r, g)

and
(2.21)

T (r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
F − (1 + b)/b

)
−N

(
r,

1
F ′

)
+ S(r, f)

≤ N(r, f) + Nk+1

(
r,

1
f

)
+ N(r, g) + O(log r) + S(r, f)

= N(r, f) + Nk+1

(
r,

1
f

)
+ N(r, g) + S(r, f).

Suppose that there exists a subset I ⊆ R+ satisfying mes I = ∞ such that
(2.12) holds. Then from (2.12) and (2.20) we get

(2.22) Θ(∞, g) + δk+1(0, g) + δk+1(0, f) + kΘ(∞, f) ≤ k + 2.

From (2.1) and (2.22) we get

(2.23) 2Θ(∞, f) + Θ(∞, g) + Θ(0, f) + Θ(0, g) > 5.

From (2.23) and Remark 1.1 we get a contradiction. Suppose that there exists
a subset I ⊆ R+ satisfying mes I = ∞ such that (2.13) holds. Then from (2.13)
and (2.21) we get

(2.24) Θ(∞, f) + Θ(∞, g) + δk+1(0, f) ≤ 2.
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From (2.1) and (2.24) we get

(2.25) (k + 1)Θ(∞, f) + Θ(∞, g) + Θ(0, f) + Θ(0, g) + δk+1(0, g) > k + 5.

From (2.25) and Remark 1.1 we get a contradiction.
Case 2. Suppose that b 6= 0 and a 6= b. We discuss the following two

subcases.
Subcase 2.1. Suppose that b = −1. Then a 6= 0 and (2.15) can be rewritten

as

(2.26) F =
a

a + 1−G
.

From (2.3) and (2.26) we get

(2.27) N

(
r,

1
a + 1−G

)
= N

(
r,

a

a + 1−G

)
= N(r, f (k)) = N(r, f).

From (2.3), (2.27), Lemma 2.1 and in the same manner as in the proof of (2.7)
we get
(2.28)

T (r, g) ≤ N(r, g) + N

(
r,

1
g

)
+ N

(
r,

1
a + 1−G

)
−N

(
r,

1
G′

)
+ S(r, g)

≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N

(
r,

1
a + 1−G

)
+ O(log r) + S(r, g)

= N(r, g) + Nk+1

(
r,

1
g

)
+ N(r, f) + S(r, g).

From (2.2), (2.28) and in the same manner as in Case 1 we get contradictions.
Subcase 2.2. Suppose that b 6= −1. Then (2.15) can be rewritten as

(2.29) F − b + 1
b

=
−a

b2
· 1
G + (a− b)/b

.

From (2.3) and (2.29) we get

(2.30) N

(
r,

1
G + (a− b)/b

)
= N(r, f (k)) + O(log r) = N(r, f) + O(log r).

From (2.3), (2.30), Lemma 2.1 and in the same manner as in the proof of (2.7)
we get
(2.31)

T (r, g) ≤ N(r, g) + N

(
r,

1
g

)
+ N

(
r,

1
G + (a− b)/b

)
−N

(
r,

1
G′

)
+ S(r, g)

≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N

(
r,

1
G + (a− b)/b

)
+ O(log r) + S(r, g)

= N(r, g) + Nk+1

(
r,

1
g

)
+ N(r, f) + S(r, g).

From (2.2), (2.31) and in the same manner as in Case 1 we get contradictions.
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Case 3. Suppose that b = 0. Then a 6= 0 and we get from (2.15) that

(2.32) g = af + (1− a)P1,

where P1 is a polynomial with its degree γP1 ≥ k. If a 6= 1, then (1− a)P1 6≡ 0.
This together with (2.32) and Nevanlinna’s three small functions theorem (see
[16, Theorem 1.36]) implies

(2.33)
T (r, g) ≤ N(r, g) + N

(
r,

1
g

)
+ N

(
r,

1
g − (1− a)P1

)
+ S(r, g)

= N(r, g) + N

(
r,

1
g

)
+ N

(
r,

1
f

)
+ S(r, g).

From (2.32) we get T (r, f) = T (r, g) + O(log r). From this and (2.33) we get

(2.34) Θ(0, f) + Θ(0, g) + Θ(∞, g) ≤ 2.

From (2.34) and (2.1) we get

(2.35) (k + 2)Θ(∞, f) + Θ(∞, g) + δk+1(0, f) + δk+1(0, g) > k + 5.

From (2.35) and Remark 1.1 we get a contradiction. Thus a = 1, and so it
follows from (2.32) that f = g, which reveals the conclusion of Lemma 2.3.
Lemma 2.3 is thus completely proved. ¤

Lemma 2.4 (see [16, Theorem 1.24]). Suppose that f is a nonconstant mero-
morphic function in the complex plane and k is a positive integer. Then

N

(
r,

1
f (k)

)
≤ N

(
r,

1
f

)
+ kN(r, f) + S(r, f).

Lemma 2.5 (see [14, Proof of Lemma 2]). Let f be a transcendental mero-
morphic function, and let Pn(f) be a differential polynomial in f of the form

Pn(f) = anfn(z) + an−1f
n−1(z) + an−2f

n−2 + · · ·+ a1f(z) + a0,

where an(6= 0), an−1, an−2, . . . , a1, a0 are n + 1 complex numbers. Then

T (r, Pn(f)) = nT (r, f) + O(1).

Lemma 2.6 (see [16, Lemma 1.10]). Let f1 and f2 be two nonconstant mero-
morphic functions in the complex plane, and let c1, c2, c3 be three nonzero
complex numbers. If c1f1 + c2f2 = c3, then

T (r, f1) ≤ N(r, f1) + N

(
r,

1
f1

)
+ N

(
r,

1
f2

)
+ S(r, f1).

Lemma 2.7 (see [7, Theorem 3.5]). Suppose that f is a nonconstant mero-
morphic function in the complex plane and k is a positive integer. Then

T (r, f) ≤
(

2 +
1
k

)
N

(
r,

1
f

)
+

(
2 +

2
k

)
N

(
r,

1
f (k) − 1

)
+ S(r, f).
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Lemma 2.8 (see [16, Proof of Theorem 4.8]). Let F and G be two distinct
nonconstant meromorphic functions, and let c be a complex number such that
c 6= 0, 1. If F and G share 1 and c IM, and if N(r, 1/F ) + N(r, F ) = S(r, F )
and N(r, 1/G) + N(r,G) = S(r,G), then F and G share 0, 1, c, ∞ CM.

Lemma 2.9 (see [13]). If f and g are distinct nonconstant meromorphic func-
tions that share four values a1, a2, a3, a4 CM, then f is a Möbius transforma-
tion of g, two of the shared values, say a1 and a2 are Picard exceptional values,
and the cross ratio (a1, a2, a3, a4) = −1.

Lemma 2.10. Let f and g be two transcendental meromorphic functions, let
n ≥ 2 be a positive integers, and let P be a nonconstant polynomial with its
degree γP ≤ n. If fnf ′gng′ = P 2, then f and g are expressed as f = c1e

cQ and
g = c2e

−cQ respectively, where c1, c2 and c are three nonzero complex numbers
satisfying (c1c2)n+1c2 = −1, Q is a polynomial satisfying Q =

∫ z

0
P (η)dη.

Proof. First, we will prove

(2.36) N

(
r,

1
f

)
+ N

(
r,

1
g

)
= O(log r).

In fact, suppose that z0 is a zero of f with multiplicity m, such that z0 6∈
{z : P (z) = 0}. Then from fnf ′gng′ = P 2 we see that z0 is a pole of g with
multiplicity p, such that nm + m− 1 = np + p + 1, and so (m− p)(n + 1) = 2,
which contradicts the fact that n ≥ 2 and m, p are positive integers. Thus if z0

is a zero of f, then z0 ∈ {z : P (z) = 0}, and so we have N(r, 1/f) = O(log r).
Similarly, we get N(r, 1/g) = O(log r), and so we get (2.36). Next we prove

(2.37) N(r, f) + N(r, g) = S(r, f) + S(r, g).

In fact, from (2.36), Lemma 2.4 and fnf ′gng′ = P 2 we have

(2.38)

(n + 2)N(r, f) ≤ N(r, fnf ′)

= N

(
r,

P 2

gng′

)

≤ N

(
r,

1
gng′

)

= N

(
r,

1
(gn+1)′

)

≤ N

(
r,

1
gn+1

)
+ N(r, gn+1) + S(r, gn+1)

= (n + 1)N
(

r,
1
g

)
+ N(r, g) + S(r, gn+1)

= N(r, g) + O(log r) + S(r, gn+1)

= N(r, g) + S(r, gn+1).
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From Lemma 2.5 we have T (r, gn+1) = (n + 1)T (r, g) + O(1). This together
with (2.38) implies S(r, gn+1) = S(r, g). Combining (2.38), we get

(2.39) (n + 2)N(r, f) ≤ N(r, g) + S(r, g).

Similarly

(2.40) (n + 2)N(r, g) ≤ N(r, f) + S(r, f).

From (2.39) and (2.40) we get

(n + 1)N(r, f) + (n + 1)N(r, g) ≤ S(r, f) + S(r, g),

which reveals (2.37). Let

(2.41) F1 =
fnf ′

P
and G1 =

gng′

P
.

From (2.41) and fnf ′gng′ = P 2 we get

(2.42) F1G1 = 1.

If F1 = G1, then it follows from (2.41) that

(2.43) fn+1 − gn+1 = c3,

where c3 is a finite complex number. If c3 = 0, from (2.43) we get

(2.44) f = tg,

where t is a complex number satisfying tn+1 = 1. If c3 6= 0, from (2.43) and
Lemma 2.6 we get

(2.45)

T (r, fn+1) ≤ N

(
r,

1
fn+1

)
+ N

(
r,

1
gn+1

)
+ S(r, fn+1)

= N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ S(r, fn+1)

≤ T (r, f) + T (r, g) + S(r, fn+1).

From (2.43) and Lemma 2.5 we get

(2.46) T (r, fn+1) = (n + 1)T (r, f) + O(1)

and

(2.47) T (r, f) = T (r, g) + O(1).

From (2.46) we have

(2.48) S(r, fn+1) = S(r, f).

From (2.45)-(2.48) we get (n− 1)T (r, f) = S(r, f). From this and n ≥ 2 we get
a contradiction. Next we suppose that F1 6≡ G1. From (2.36), (2.37), the left
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equality of (2.41) and Lemma 2.4 we get

(2.49)

N

(
r,

1
F1

)
≤ N

(
r,

1
fn

)
+ N

(
r,

1
f ′

)

= N

(
r,

1
f ′

)
+ nN

(
r,

1
f

)

≤ (n + 1)N
(

r,
1
f

)
+ N(r, f) + S(r, f)

= O(log r) + S(r, f) + S(r, g)

= S(r, f) + S(r, g).

Similarly

(2.50) N
(
r,

1
G1

)
= S(r, f) + S(r, g).

Since

(2.51) S(r, g) + O(log r) = S(r, g),

from Lemma 2.7 we get

(2.52) T (r, gn+1) ≤ 3N

(
r,

1
gn+1

)
+ 4N

(
r,

1
(gn+1)′ − 1

)
+ S(r, gn+1).

From (2.36), (2.52), the right equality of (2.41) and Lemma 2.5 we get

(2.53)

(n + 1)T (r, g) ≤ 4T (r, gng′) + S(r, g)

≤ 4T (r,G1) + S(r, g) + O(log r)

= 4T (r,G1) + S(r, g).

Since

(2.54)

T (r,G1) = T

(
r,

gng′

P

)

≤ (n + 2)T (r, g) + S(r, g) + O(log r)

= (n + 2)T (r, g) + S(r, g),

from (2.53), (2.54) and the condition that g is a transcendental meromorphic
function we know that G1 = gng′/P is a transcendental meromorphic function
and

(2.55) S(r, g) = S(r,G1).

Similarly, F1 = fnf ′/P is a transcendental meromorphic function and

(2.56) S(r, f) = S(r, F1).

From (2.42) we get

(2.57) T (r, F1) = T (r,G1) + O(1).
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From (2.57) we get

(2.58) S(r, F1) = S(r,G1).

From (2.55), (2.56) and (2.58) we get

(2.59) S(r, f) + S(r, g) = S(r, F1), S(r, f) + S(r, g) = S(r,G1).

From (2.49), (2.50) and (2.59) we get

(2.60) N

(
r,

1
F1

)
= S(r, F1), N

(
r,

1
G1

)
= S(r,G1).

From (2.42), (2.58) and (2.60) we get
(2.61)

N(r, F1) = N

(
r,

1
G1

)
= S(r, F1), N(r,G1) = N

(
r,

1
F1

)
= S(r,G1).

From (2.42) we know that F1 and G1 share 1 and −1 IM. This together with
(2.58), (2.60), (2.61) and Lemma 2.8 implies that F1 and G1 share 0, 1, c, ∞
CM, and so it follows from Lemma 2.9 that 0 and ∞ are Picard exceptional
values of F1 and G1. This together with (2.41) implies that f and g are two
transcendental entire functions. Let

(2.62) f = P1e
α1 , g = P2e

α2 ,

where P1 and P2 are two nonzero polynomials, α1 and α2 are two nonconstant
entire functions. Substituting (2.62) into fnf ′gng′ = P 2, we get

(2.63) Pn
1 (P ′1 + P1α

′
1)P

n
2 (P ′2 + P2α

′
2) · e(n+1)α1+(n+1)α2 = P 2.

From (2.63) we get

(2.64) (n + 1)α1 + (n + 1)α2 = 0

and

(2.65) Pn
1 (P ′1 + P1α

′
1)P

n
2 (P ′2 + P2α

′
2) = P 2.

From (2.64) we get

(2.66) α1 = −α2 =: α

and

(2.67) α′1 = −α′2 = α′.

Substituting (2.67) into (2.65), we get

(2.68) Pn
1 (P ′1 + P1α

′)Pn
2 (P ′2 − P2α

′) = P 2.

From (2.68) we see that α′ is a polynomial such that α′ 6≡ 0. From (2.62), (2.66)
and (2.67) we get

(2.69) F1 =
fnf ′

P
=

(P ′1 + P1α
′)Pn

1

P
· e(n+1)α
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and

(2.70) G1 =
gng′

P
=

(P ′2 − P2α
′)Pn

2

P
· e−(n+1)α.

Since F1 6= 0,∞, from (2.69) we have ((P ′1 + P1α
′)Pn

1 )/P 6= 0,∞, and so

(2.71)
(P ′1 + P1α

′)Pn
1

P
= c4,

where c4 6= 0 is a complex number. Similarly

(2.72)
(P ′2 − P2α

′)Pn
2

P
= c5,

where c5 6= 0 is a complex number. From (2.71) and (2.72) we get

(2.73) Pn
1 P ′1 + Pn+1

1 α′ = c4P

and

(2.74) P ′2P
n
2 − Pn+1

2 α′ = c5P.

If one of P1 and P2 is not a constant, from (2.73), (2.74) and the fact that
α′ 6≡ 0 is a polynomial we get γP ≥ n + 1, which contradicts the condition
γP ≤ n. Thus P1 and P2 are nonzero constants, and so (2.65) can be rewritten
as

(2.75) (P1P2)n+1α′1α
′
2 = P 2.

From (2.67) and (2.75) we get

(2.76) −(P1P2)n+1α′2 = P 2.

From (2.76) we get

(2.77) α = c6

∫ z

0

P (η)dη + c7,

where c6 and c7 are complex numbers, and c6 satisfies c2
6 = −(P1P2)−n−1.

From (2.57), (2.66) and (2.77) we get

(2.78) f(z) = c8 · ec6Q, g(z) = c9 · e−c6Q,

where c8 and c9 are nonzero complex numbers satisfying c8c9 = P1P2, Q is a
nonconstant polynomial such that

(2.79) Q =
∫ z

0

P (η)dη.

From c2
6 = −(P1P2)−n−1 and c8c9 = P1P2 we get

(2.80) c2
6(c8c9)n+1 = −1.

From (2.78), (2.79) and (2.80) we get the conclusion of Lemma 2.10. Lemma
2.10 is thus completely proved. ¤
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Lemma 2.11 (see [20]). Let s (> 0) and t be two relatively prime integers, and
let c be a finite complex number satisfying cs = 1. Then there exists one and
only one common zero of ωs − 1 and ωt − c.

Lemma 2.12 (see [11]). Let f be a nonconstant meromorphic function, and

let F =
∑p

k=0 akfk

/∑q
j=0 bjf

j be an irreducible rational function in f with

constant coefficients {ak} and {bj}, where ap 6= 0 and bq 6= 0. Then T (r, F ) =
d T (r, f) + O(1), where d = max {p, q}.

3. Proof of theorems

Proof of Theorem 1.1. Let

(3.1) F1 =
fn+1

n + 1
and G1 =

gn+1

n + 1
.

Then from (3.1) and the condition that fnf ′−P and gng′−P share 0 CM we
see that F ′1 − P and G′1 − P share 0 CM. Let

(3.2) ∆1 = 3Θ(∞, F1)+2Θ(∞, G1)+Θ(0, F1)+Θ(0, G1)+δ2(0, F1)+δ2(0, G1)

and

(3.3) ∆2 = 3Θ(∞, G1)+2Θ(∞, F1)+Θ(0, G1)+Θ(0, F1)+δ2(0, G1)+δ2(0, F1).

From (3.1) we have

(3.4)

Θ(0, F1) = 1− lim sup
r→∞

N
(
r, 1

F1

)

T (r, F1)

= 1− lim sup
r→∞

N
(
r, 1

f

)

(n + 1)T (r, f) + O(1)

≥ 1− lim sup
r→∞

T (r, f)
(n + 1)T (r, f)

=
n

n + 1
,

(3.5)

Θ(∞, F1) = 1− lim sup
r→∞

N(r, F1)
T (r, F1)

= 1− lim sup
r→∞

N(r, f)
(n + 1)T (r, f) + O(1)

≥ 1− lim sup
r→∞

T (r, f)
(n + 1)T (r, f)

=
n

n + 1
.

Similarly

(3.6) Θ(0, G1) ≥ n

n + 1
and Θ(∞, G1) ≥ n

n + 1
.
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Again from (3.1) and Definition 1.1 we get

(3.7)

δ2(0, F1) = 1− lim sup
r→∞

N2

(
r, 1

F1

)

T (r, F1)

= 1− lim sup
r→∞

N2

(
r, n+1

fn+1

)

T
(
r, fn+1

n+1

)

= 1− lim sup
r→∞

2N
(
r, 1

f

)

(n + 1)T (r, f) + O(1)
≥ n− 1

n + 1
.

Similarly

(3.8) δ2(0, G1) ≥ n− 1
n + 1

.

From (3.2)-(3.8) and n ≥ 11 we get

(3.9) ∆1 ≥ 9n− 2
n + 1

> 8.

From (3.3) and in the same manner as above, we get

(3.10) ∆2 ≥ 9n− 2
n + 1

> 8

if n ≥ 11.

From the condition that f and g are transcendental meromorphic functions
we know that F1 and G1 are transcendental meromorphic functions. This
together with (3.9), (3.10), Lemma 2.3 and the condition that F ′1 − P and
G′1−P share 0 CM gives F ′1G

′
1 = P 2 or F1 = G1. We discuss the following two

cases.
Case 1. Suppose that F ′1G

′
1 =P 2. Then it follows from (3.1) that fnf ′gng′ =

P 2. This together with Lemma 2.10 reveals the conclusion of Theorem 1.1.
Case 2. Suppose that F1 =G1. Then it follows from (3.1) that fn+1 = gn+1

which implies that f = tg, where t is a complex number satisfying tn+1 = 1.
This reveals the conclusion of Theorem 1.1. Theorem 1.1 is thus completely
proved. ¤

Proof of Theorem 1.2. Let

(3.11) F2 = fn(f − 1), G2 = gn(g − 1),

and let
(3.12)
∆1 = 3Θ(∞, F2) + 2Θ(∞, G2) + Θ(0, F2) + Θ(0, G2) + δ2(0, F2) + δ2(0, G2)

and
(3.13)
∆2 = 3Θ(∞, G2) + 2Θ(∞, F2) + Θ(0, G2) + Θ(0, F2) + δ2(0, G2) + δ2(0, F2).
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From the left equality of (3.11) and Lemma 2.5 we get

(3.14)

Θ(0, F2) = 1− lim sup
r→∞

N
(
r, 1

F2

)

T (r, F2)

= 1− lim sup
r→∞

N
(
r, 1

f

)
+ N

(
r, 1

f−1

)

(n + 1)T (r, f) + O(1)

≥ 1− lim sup
r→∞

2T (r, f)
(n + 1)T (r, f)

=
n− 1
n + 1

and

(3.15)

Θ(∞, F2) = 1− lim sup
r→∞

N(r, F2)
T (r, F2)

= 1− lim sup
r→∞

N(r, f)
(n + 1)T (r, f) + O(1)

≥ 1− lim sup
r→∞

T (r, f)
(n + 1)T (r, f)

=
n

n + 1
.

Similarly, from the right equality of (3.11) we get

(3.16) Θ(0, G2) ≥ n− 1
n + 1

, Θ(∞, G2) ≥ n

n + 1
.

From the left equality of (3.11) and Lemma 2.5 we get

(3.17)

δ2(0, F2) = 1− lim sup
r→∞

N2(r, 1
F2

)
T (r, F2)

= 1− lim sup
r→∞

N2

(
r, 1

fn(f−1)

)

T (r, fn(f − 1))

≥ 1− lim sup
r→∞

2N
(
r, 1

f

)
+ N

(
r, 1

f−1

)

(n + 1)T (r, f) + O(1)

≥ 1− lim sup
r→∞

3T (r, f) + O(1)
(n + 1)T (r, f) + O(1)

=
n− 2
n + 1

.

Similarly, from the right equality of (3.11) and Lemma 2.5 we get

(3.18) δ2(0, G2) ≥ n− 2
n + 1

.

From (3.12)-(3.17) and n ≥ 15 we get

(3.19) ∆1 ≥ 9n− 6
n + 1

> 8.

Similarly, from (3.13) we get

(3.20) ∆2 ≥ 9n− 6
n + 1

> 8 if n ≥ 15.
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From the condition that f and g are transcendental meromorphic functions
we know that F2 and G2 are transcendental meromorphic functions. This
together with (3.19), (3.20), Lemma 2.3 and the condition that F ′2 − P and
G′2−P share 0 CM gives F ′2G

′
2 = P 2 or F2 = G2. We discuss the following two

cases.
Case 1. Suppose that F ′2G

′
2 = P 2. Then it follows from (3.11) that

(3.21) (fn(f − 1))′(gn(g − 1))′ = P 2.

Since

(3.22) (fn(f − 1))′ = (fn+1 − fn)′ = (n + 1)fn−1(f − n

n + 1
)f ′

and

(3.23) (gn(g − 1))′ = (gn+1 − gn)′ = (n + 1)gn−1(g − n

n + 1
)g′,

from (3.21)-(3.23) we get

(3.24) fn−1(f − n

n + 1
)f ′gn−1(g − n

n + 1
)g′ =

P 2

(n + 1)2
.

Let z0 6∈ {z : P (z) = 0} be a zero of f of order p. Then it follows from (3.24)
that z0 is a pole of g. Suppose that z0 is a pole of g of order q. Then we have
np− 1 = (n + 1)q + 1, i.e., n(p− q) = q + 2, which implies that p ≥ q + 1 and
q + 2 ≥ n, and so

(3.25) p ≥ n− 1.

Let z1 6∈ {z : P (z) = 0} be a zero of f − n/(n + 1) of order p1. Then it
follows from (3.24) that z1 is a pole of g. Suppose that z1 is a pole of g of order
q1. Then from (3.24) we have 2p1 − 1 = (n + 1)q1 + 1. From this we get

(3.26) p1 ≥ 1 +
n + 1

2
=

n + 3
2

.

Let z2 6∈ {z : P (z) = 0} be a zero of f ′ of order p2 that is not a zero of
f(f − n/(n + 1)). Then from (3.24) we see that z2 is a pole of g. Suppose that
z2 is a pole of g of order q2. Then it follows from (3.24) that p2 = (n+1)q2 +1.
From this we get

(3.27) p2 ≥ n + 2.
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Let z3 6∈ {z : P (z) = 0} be a pole of f . Then it follows from (3.24) that z3

is a zero of g(g − n/(n + 1))g′. Combining (3.24)-(3.27) and n ≥ 15, we get
(3.28)

N(r, f) ≤ N

(
r,

1
g

)
+ N

(
r,

1
g − n/(n + 1)

)
+ N

(
r,

1
g′

)
+ O(log r)

≤ 1
n− 1

N

(
r,

1
g

)
+

2
n + 3

N

(
r,

1
g − n/(n + 1)

)
+

1
n + 2

N

(
r,

1
g′

)

+ O(log r) + S(r, g)

≤
(

1
14

+
1
9

+
2
17

)
T (r, g) + S(r, g).

From (3.25)-(3.28), the condition n ≥ 15 and the second fundamental theorem
we get
(3.29)

T (r, f) ≤ N

(
r,

1
f

)
+ N

(
r,

1
f − n/(n + 1)

)
+ N(r, f) + S(r, f)

≤
(

1
9

+
1
14

)
T (r, f) +

(
1
14

+
1
9

+
2
17

)
T (r, g) + O(log r) + S(r, f)

≤
(

1
9

+
1
14

)
T (r, f) +

(
1
14

+
1
9

+
2
17

)
T (r, g) + S(r, f).

Similarly

(3.30) T (r, g) ≤
(

1
9

+
1
14

)
T (r, g) +

(
1
14

+
1
9

+
2
17

)
T (r, f) + S(r, g).

From (3.29) and (3.30) we get T (r, f) + T (r, g) = S(r, f) + S(r, g), which is
impossible.

Case 2. Suppose that F2 = G2. Then from (3.11) we get

(3.31) fn(f − 1) = gn(g − 1).

Suppose that f 6≡ g. Let

(3.32) H = f/g.

We discuss the following two subcases.
Subcase 2.1. Suppose that H is a constant. Then H 6= 1. From (3.31) and

(3.32) we get

(3.33) (Hn+1 − 1)g = Hn − 1.

If Hn+1 − 1 6= 0, from (3.33) we have g = (Hn − 1)/(Hn+1 − 1). Thus g is a
constant, which is impossible. If Hn+1−1 = 0, from (3.33) we get Hn−1 = 0,
and so H = 1, which is impossible.
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Subcase 2.2. Suppose that H is not a constant. First of all, from (3.31)
and (3.32) we get (3.33). This together with Hn+1 − 1 6≡ 0 gives

(3.34) g =
1−Hn

1−Hn+1
.

Since n and n+1 are two relatively prime integers, from (3.32), (3.34), Lemma
2.11 and Lemma 2.12 we get

(3.35) T (r, f) = T (r,Hg) = nT (r,H) + O(1).

On the other hand, from (3.32), (3.34) and the second fundamental theorem
we get

(3.36) N(r, f) =
n∑

j=1

N

(
r,

1
H − λj

)
≥ (n− 2)T (r,H) + S(r,H),

where λ1, λ2, . . . , λn are finite complex numbers satisfying λj 6= 1 and λn+1
j =

1 (1 ≤ j ≤ n). From (3.35) and (3.36) we get

(3.37)

Θ(∞, f) = 1− lim sup
r→∞

N(r, f)
T (r, f)

≤ 1− lim sup
r−→∞

(n− 2)T (r,H) + S(r,H)
nT (r,H)

≤ 1− n− 2
n

=
2
n

,

which contradicts the condition Θ(∞, f) > 2/n. Theorem 1.2 is thus completely
proved. ¤
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