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WEAK AMENABILITY OF CONVOLUTION BANACH
ALGEBRAS ON COMPACT HYPERGROUPS

Hojjatollah Samea

Abstract. In this paper we find necessary and sufficient conditions for
weak amenability of the convolution Banach algebras A(K) and L2(K) for
a compact hypergroup K, together with their applications to convolution
Banach algebras Lp(K) (2 ≤ p < ∞). It will further be shown that
the convolution Banach algebra A(G) for a compact group G is weakly
amenable if and only if G has a closed abelian subgroup of finite index.

Introduction

Vrem ([9]) gave a definition of A(K) for a compact hypergroup K and prove
that A(K) is a Banach algebra with convolution product. This Banach algebra
plays a key role throughout the paper.

The organization of this paper is as follows. The preliminaries and notations
are given in Section 1. In Section 2 we state and prove a number of basic
results on weak amenability of general Banach algebras which are needed for
the rest of the paper. As an application we prove that for every compact abelian
hypergroup K, the convolution Banach algebras Lp(K) (1 ≤ p < ∞), and
C(K) are weakly amenable. In Section 3 we show that the convolution Banach
algebra A(K) is weakly amenable if and only if supπ∈ bK kπ(dπ − 1) < ∞ (dπ is
the dimension of representation π, and kπ is the constant defined by kπ = c−1

π ,
where cπ =

∫
K
|〈π(x)ξ, ξ〉|2 dωK(x) for some ξ in the representation space Hπ

of π with ‖ξ‖ = 1, see the proof of Theorem 2.2 of [9]). Also we prove that
the convolution Banach algebra L2(K) is weakly amenable if and only if the
set {π ∈ K̂ : dim π 	 1} is finite. As a result it will further be shown that the
convolution Banach algebra A(G) for a compact group G is weakly amenable if
and only if G is almost abelian (i.e., G has a closed abelian subgroup of finite
index). Furthermore, we prove that if K is a compact hypergroup such that
x ∗ y is a finite set for every x, y ∈ K, then the convolution Banach algebras
Lp(K) (2 ≤ p < ∞) are weakly amenable if and only if K is finite or abelian.
An application of these results has enabled us to prove that if K is an infinite
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non-abelian compact hypergroup such that x∗y is a finite set for every x, y ∈ K,
then the set {π ∈ K̂ : dim π 	 1} is infinite.

1. Preliminaries

For a Banach algebra A, an A-bimodule will always refer to a Banach A-
bimodule X, that is a Banach space which is algebraically an A-bimodule, and
for which there is a constant CX ≥ 0 such that ‖a.x‖, ‖x.a‖ ≤ CX‖a‖‖x‖
(a ∈ A, x ∈ X). A bounded linear map D : A → X is called an X-derivation,
if for each a, b ∈ A, D(ab) = D(a).b + a.D(b). For every x ∈ X, we define
adA

x by adA
x (a) = a.x − x.a (a ∈ A). It is easily seen that adA

x is a derivation.
Derivations of this form are called inner derivations. The set of all derivations
from A into X is denoted by Z1(A,X), and the set of all inner X-derivations is
denoted by B1(A,X). We denote by H1(A, X) the difference space of Z1(A,X)
modulo B1(A,X).

Let A be a Banach algebra and X be a Banach A-bimodule. Then the
Banach space X∗ with the dual module multiplications given by

(fa)(x) = f(ax), (af)(x) = f(xa) (a ∈ A, f ∈ X∗, x ∈ X),

defines a Banach A-bimodule called the dual Banach A-bimodule X∗. A Ba-
nach algebra A is called amenable if for each Banach A-bimodule X, H1(A,X∗)
= 0. Every Banach algebra A with the product of A giving the two module
multiplications defines a Banach A-bimodule. Let A∗ be the dual A-bimodule.
A Banach algebra A is called weakly amenable if H1(A,A∗) = 0.

Let H be a n-dimensional Hilbert space and B(H) be the space of all linear
operators on H. Clearly we can identify B(H) withMn(C) (the space of all n×
n-matrices on C). For E ∈ B(H), let (λ1, . . . , λn) be the sequence of eigenvalues
of the operator |E|, written in any order. Define ‖E‖ϕ∞ = max1≤i≤n |λi|, and

‖E‖ϕp = (
∑n

i=1 |λi|p)
1
p (1 ≤ p < ∞). For more details see Definition D.37 and

Theorem D.40 of [4].
Throughout this paper K is a (measured) locally compact hypergroup with

involution x 7→ x̄ and the identity e as defined by Jewett ([5]). By the term
measured we mean that K admits a left Haar measure ωK . Let M(K) be
the space of all bounded regular Borel measures on K. For 1 ≤ p ≤ ∞, let
Lp(K) = Lp(K,ωK). For x, y ∈ K define x ∗ y as the set supp(εx ∗ εy). For
Borel functions f and g, at least one of which is σ-finite, define the convolution
f ∗ g on K by (f ∗ g)(x) =

∫
K

f(x ∗ y)g(ȳ)dωK(y) (x ∈ K), where f(x ∗ y) =∫
K

fd(εx ∗ εy).
Let K be a compact hypergroup. By Theorem 1.3.28 of [1], K admits a

left Haar measure. Throughout the present paper we use the normalized Haar
measure ωK on the compact hypergroup K (i.e., ωK(K) = 1). If π ∈ K̂ (where
K̂ is the set of equivalence classes of continuous irreducible representations
of K, c.f. [1], 11.3 of [5], and [9]), then by Theorem 2.2 of [9], π is finite
dimensional. Furthermore by the proof of Theorem 2.2 of [9], there exists a
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constant cπ such that for each ξ ∈ Hπ with ‖ξ‖ = 1
∫

K

|〈π(x)ξ, ξ〉|2 dωK(x) = cπ.

Let kπ = c−1
π . By Theorem 2.6 of [9], kπ ≥ dπ. Moreover if K is a group,

then kπ = dπ. For each π ∈ K̂, let Hπ be the representation space of π

and dπ = dim Hπ. The ∗-algebra
∏

π∈ bK B(Hπ) will denoted by E(K̂); scaler
multiplication, addition, multiplication, and the adjoint of an element are de-
fined coordinate-wise. Let E = (Eπ) be an element of E(K̂). We define

‖E‖p :=
(∑

π∈ bK kπ‖Eπ‖p
ϕp

) 1
p

(1 ≤ p < ∞), and ‖E‖∞ = supπ∈ bK ‖Eπ‖ϕ∞ .

For 1 ≤ p ≤ ∞, Ep(K̂) is defined as the set of all E ∈ E(K̂) for which ‖E‖p <

∞. By Theorems 28.25, 28.27, and 28.32(v) of [4], the spaces (Ep(K̂), ‖ · ‖p)
(1 ≤ p ≤ ∞) are Banach algebras. Let µ ∈ M(K). The set of all E ∈ E(K̂) such
that {π ∈ K̂ : Eπ 6= 0} is finite is denoted by E00(K̂). The Fourier transform of
µ at π ∈ K̂ is denoted by µ̂(π) and defined as the operator µ̂(π) =

∫
K

π(x) dµ(x)
on Hπ. Define µ̂ ∈ E(K̂) by µ̂π = µ̂(π) ∈ B(Hπ) (for more details see Theorem
3.2 of [9]). If π ∈ K̂, Tπ(K) is defined the set of all finite complex linear com-
binations of functions of the form x 7→ 〈π(x)(ξ), η〉, where ξ, η ∈ Hπ. Define
T(K) =

⋃
π∈ bK Tπ(K). Functions in T(K) are called trigonometric polynomials

on K. Clearly {f̂ : f ∈ T(K)} = E00(K̂) (see also Theorem 28.39 of [4] for the
case of groups). If f ∈ L1(K), and

∑
π∈ bK kπ‖f̂(π)‖ϕ1 < ∞, we say f has an

absolutely convergent Fourier series. The set of all functions with absolutely
convergent Fourier series is denoted by A(K) and called the Fourier space of K.
For f ∈ A(K) we define ‖f‖ϕ1 = ‖f̂‖1. By Proposition 4.2 of [9], A(K) with
the convolution product is a Banach algebra and isometrically isomorphic with
E1(K̂). Moreover each function f ∈ A(K) can be regarded as the continuous
function

∑
π∈ bK kπtr(f̂(π)π(x)). Also ‖f‖∞ ≤ ‖f‖ϕ1 . However, A(K) may not

form a Banach algebra under point-wise product (see Example 4.12 of [9]).

2. General results

Our starting point of this section is the following proposition.

Proposition 2.1. Let A be a Banach algebra. If there exists a family (Aα)α

of amenable closed subalgebras of A such that
⋃

α Aα is dense in A, then for
each symmetric A-bimodule X, Z1(A, X) = 0.

Proof. Let D be a derivation from A into X. If a ∈ A, then for each ε > 0,
there exists aα ∈ Aα such that ‖a − aα‖ < ε

‖D‖+1 . Let Dα = D|Aα
. Clearly

Dα ∈ Z1(Aα, X). On one hand Aα is amenable, so by Proposition 1 of [3] there
exists a net (ξγ)γ in X such that Dα(a′α) = limγ adAα

ξγ
(a′α) for each a′α ∈ Aα.

On the other hand since X is a symmetric Aα-bimodule, so for each a′α ∈ Aα
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and for each γ, adAα

ξγ
(a′) = 0. Therefore Dα = 0. Now, since aα ∈ Aα, so

‖Da‖ = ‖Da−Dαaα‖ = ‖D(a− aα)‖ ≤ ‖D‖‖a− aα‖ < ε.

But a ∈ A and ε > 0 are arbitrary, so D = 0. It follows that Z1(A, X) = 0. ¤

Proposition 2.2. Let A be a commutative Banach algebra. If there exists a
family (Aα)α of weakly amenable closed subalgebras of A such that

⋃
α Aα is

dense in A, then A is weakly amenable.

Proof. Let D be a derivation from A into A∗. For each α define Dα = D|Aα
.

Since Aα is weakly amenable and A∗ is a symmetric Aα-bimodule, so by Theo-
rem 2.8.63(iii) of [2] Dα = 0. A method similar to the proof of Proposition 2.1
shows that D = 0. Hence A is weakly amenable. ¤

Lemma 2.3. Let K be a compact hypergroup and A be any of Banach spaces
Lp(K) (1 ≤ p < ∞), C(K), and A(K). Then T(K) is dense in A.

Proof. By Lemma 2.12 of [9], there is a net (eα) in T+(K) such that ‖eα‖1 = 1,
and (eα) is a left approximate identity for (L1(K), ∗). Therefore eα −→ εe in
the weak* topology (or with the notations of [1], τw − limα eα = εe). So by
Lemma 1.4.6(ii) of [1], for each 1 ≤ p < ∞ and f ∈ Lp(K), ‖eα ∗f −f‖p −→ 0.
Hence if f ∈ Lp(K) and ε > 0, then there is eα ∈ T(K) such that ‖eα∗f−f‖p <

ε. But êα ∗ f = êαf̂ ∈ E00(K̂) = T̂(K). It follows that T(K) is dense in Lp(K).
By Theorem 2.13 of [9], T(K) is dense in C(K). Since Â(K) = E1(K̂), and
T̂(K) = E00(K̂) is dense in E1(K̂), so T(K) is dense in A(K). ¤

Lemma 2.4. Let K be a compact hypergroup and A be any of convolution
Banach algebras Lp(K) (1 ≤ p < ∞), A(K), and C(K). Then there exists a
family (Aα)α of amenable closed subalgebras of A such that

⋃
α Aα is dense in

A.

Proof. Let F = {F ⊆ K̂ : F is finite}. For each F ∈ F , define TF (K), through

T̂F (K) =
{

E ∈ E(K̂) : Eπ = 0 for π /∈ F
}

.

Clearly T̂F (K) is a finite dimensional subalgebra of E(K̂), and is Banach alge-
braically isomorphic with `∞ − ⊕π∈FMdπ (C). Hence by Exercise 4.1.3 of [7],
T̂F (K) is amenable. Since TF (K) ⊆ T(K) ⊆ A, so TF (K) is an amenable
closed subalgebra of A. Clearly T(K) =

⋃
F∈F TF (K). Now, by Lemma 2.3,

T(K) is dense in A. This finishes the proof. ¤

Proposition 2.5. Let K be a compact hypergroup and A be any of the convo-
lution Banach algebras Lp(K) (1 ≤ p < ∞), A(K), and C(K). Then for each
symmetric Banach A-bimodule X, H1(A, X) = 0.

Proof. This follows immediately from Lemma 2.4 and Proposition 2.1. ¤

A combination of Lemma 2.4 and Proposition 2.2 yields the following result.
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Theorem 2.6. Let K be a compact commutative hypergroup and A be any of
the convolution Banach algebras Lp(K) 1 ≤ p < ∞, A(K), and C(K). Then
A is weakly amenable.

Remark 2.7. Example 4.10 of [8], shows that there exists a noncompact com-
mutative hypergroup K such that L1(K) is not weakly amenable. But, by
Proposition 2.6 for a compact commutative hypergroup K, L1(K) is weakly
amenable.

3. Weak amenability of certain convolution Banach algebras on
compact hypergroups

The following proposition which is interesting in its own right, is needed in
the sequel.

Proposition 3.1. Let n ∈ N and 1 ≤ p, q ≤ ∞. If D is a derivation from
(Mn(C), ‖ · ‖ϕp) into (Mn(C), ‖ · ‖ϕq ), then there exists E ∈Mn(C) such that

D(A) = AE − EA (A ∈Mn(C)),

and ‖E‖ϕq ≤ n‖D‖. If n = 1, we can take E = 0.

Proof. For each 1 ≤ i, j ≤ n, let Eij be the elementary n× n-matrix defined as
follows: (Eij)kl = 1 for k = i, l = j and (Eij)kl = 1 for all others 1 ≤ k, l ≤ n.
Let

E =
1
n

n∑

i,j=1

EijD (Eji) .

By an elementary calculation one can prove that for each A ∈Mn(C), D(A) =
AE−EA (see also Proposition 1.9.20 and the proof of Theorem 1.9.21((b)⇒(a))
of [2]). By Theorem D.52 of [4]

‖E‖ϕq ≤ 1
n

n∑

i,j=1

‖EijD (Eji)‖ϕq
≤ 1

n

n∑

i,j=1

‖Eij‖ϕq
‖D (Eji)‖ϕq

≤ 1
n

n∑

i,j=1

‖Eij‖ϕq
‖D‖ ‖Eji‖ϕp

=
1
n

n∑

i,j=1

‖D‖ = n‖D‖.

If n = 1, then clearly D = 0, and so we can take E = 0. ¤

Lemma 3.2. Let K be a compact hypergroup. Then the mapping Θ : E∞(K̂) →
A(K)∗ given by

〈f, Θ(A)〉 =
∑

π∈ bG
kπtr

(
f̂(π)Aπ

)
(f ∈ A(K), A ∈ E∞(K̂)),

is an isometrically Banach A(K)-bimodule isomorphism. In particular

Θ(f̂A) = f.Θ(A), Θ(Af̂) = Θ(A).f (f ∈ A(K), A ∈ E∞(K̂)).
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Proof. By Proposition 4.2 of [9], the mapping F : A(K) → E1(K̂), f 7→ f̂ is an
isometrically algebra isomorphism. So the adjoint F∗ : E1(K̂)∗ → A(K)∗ of F
is an isometrically Banach space isomorphism. It is obvious that

F∗(f̂ .E) = f.F∗(E),F∗(E.f̂) = F∗(E).f (f ∈ A(K), E ∈ E1(K̂)∗).

By Theorem 28.31 of [4], the mapping T : E∞(K̂) → E1(K̂)∗ given by

〈B, T (A)〉 =
∑

π∈ bK
kπtr(BπAπ) (A ∈ E1(K̂), B ∈ E∞(K̂)),

is an isometrically Banach space isomorphism. For each A, B ∈ E1(K̂), and
X ∈ E∞(K̂), we have

〈B, T (X).A〉 = 〈AB, T (X)〉 =
∑

π∈ bG
kπtr((AB)πXπ)

=
∑

π∈ bG
kπtr(Xπ(AB)π)) =

∑

π∈ bG
kπtr((XA)πBπ) = 〈B, T (XA)〉.

So T (X).A = T (XA). Similarly A.T (X) = T (AX). Now, since Θ = F∗ ◦ T ,
so it is an isometrically Banach space isomorphism, and moreover

Θ(f̂A) = f.Θ(A),Θ(Af̂) = Θ(A)f̂ (f ∈ A(K), A ∈ E∞(K̂)). ¤

Theorem 3.3. Let K be a compact hypergroup. Then the convolution Banach
algebra A(K) is weakly amenable if and only if supπ∈ bK kπ(dπ − 1) < ∞.

Proof. By Lemma 3.2, the convolution Banach algebra A(K) is weakly amen-
able if and only if each derivation from E1(K̂) into E∞(K̂) is inner.

Suppose supπ∈ bK kπ(dπ − 1) < ∞. Let D ∈ Z1(E1(K̂),E∞(K̂)). For each
π ∈ K̂, and A ∈ B(Hπ), define Aπ ∈ E(I) as follows: (Aπ)π = A and (Aπ)σ = 0
for σ 6= π. Define Dπ : B(Hπ) → B(Hπ) through

Dπ(A) = (D (Aπ))π (A ∈ B(Hπ)).

Clearly Dπ is a derivation from (B(Hπ), ‖ · ‖ϕ1) into (B(Hπ), ‖ · ‖ϕ∞). So by
Proposition 3.1, there exists E(π) ∈ B(Hπ) such that ‖E(π)‖ϕ∞ ≤ dπ‖Dπ‖,
and

D(Aπ) = AπE(π)− E(π)Aπ (Aπ ∈ B(Hπ)).

Further if dπ = 1, we can assume E(π) = 0. By definition of ‖ · ‖ϕ1 , if dπ 6= 1,
then

‖E(π)‖ϕ∞ ≤ dπ‖Dπ‖ = dπ sup
‖A‖ϕ1=1

‖Dπ(A)‖ϕ∞

= dπ sup
‖A‖ϕ1=1

‖(D(Aπ))π‖ϕ∞
≤ dπ sup

‖A‖ϕ1=1

‖D(Aπ)‖∞

≤ dπ‖D‖ sup
‖A‖ϕ1=1

‖Aπ‖1 = dπkπ‖D‖ ≤ k2
π‖D‖.
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Now, if E ∈ E(K̂) is defined by Eπ = E(π) (π ∈ K̂), then

‖E‖∞ = sup
π∈ bK

‖Eπ‖ϕ∞ ≤ ‖D‖ sup
π∈ bK,dπ 6=1

k2
π ≤ ‖D‖ sup

π∈ bK
(kπ(dπ − 1))2 < ∞,

and so E ∈ E∞(K̂). So if Iπ is the dπ×dπ-identity matrix, then by Proposition
1.8.2(ii) of [2], D(Iπ

π ) = 0. Hence

D(A)π = (D(A)Iπ
π )π = (D(AIπ

π )−AD(Iπ
π ))π = (D(AIπ

π ))π

= (D(Aπ
π))π = Dπ(Aπ) = AπE(π)− E(π)Aπ = (AE − EA)π .

So D(A) = AE −EA. It follows that the convolution Banach algebra A(K) is
weakly amenable.

Now, suppose supπ∈ bK kπ(dπ − 1) = ∞. Define E ∈ E(K̂) by Eπ = kπEπ
11,

where Eπ
11 is the elementary dπ × dπ-matrix that defined in the proof of Propo-

sition 3.1. Then ‖Eπ‖ϕ∞ = kπ (π ∈ K̂), and E /∈ E∞(K̂). Define D : E1(K̂) →
E∞(K̂) by D(A) = AE − EA (A ∈ E1(K̂)). For A ∈ E1(K̂), use Theorems
D.51(i) and D.52(i) of [4] to write

‖D(A)‖∞ = ‖AE − EA‖∞ = sup
π∈ bK

‖AπEπ − EπAπ‖ϕ∞

≤ sup
π∈ bK

(‖AπEπ‖ϕ∞ + ‖EπAπ‖ϕ∞) ≤ 2 sup
π∈ bK

‖Eπ‖ϕ∞‖Aπ‖ϕ∞

= 2 sup
π∈ bK

kπ‖Aπ‖ϕ∞ ≤ 2 sup
π∈ bK

kπ‖Aπ‖ϕ1 ≤ 2
∑

π∈ bK
kπ‖Aπ‖ϕ1

= 2‖A‖1.
Therefore D is well-defined and continuous. Clearly D is a derivation. We
claim that D is not inner. Suppose to the contrary that D is inner. Then
there exists E′ ∈ E∞(K̂) such that for each A ∈ E1(K̂), D(A) = AE′ − E′A
or equivalently A(E − E′) = (E − E′)A. So for each π ∈ K̂ and Aπ ∈ B(Hπ),
Aπ(Eπ − E′

π) = (Eπ − E′
π)Aπ. Hence by Corollary 27.10 of [4], there exists

λπ ∈ C such that Eπ − E′
π = λπIπ. Since supπ∈ bK kπ(dπ − 1) = ∞, so there

exists a subset {πn : n ∈ N} of K̂ such that πm 6= πn for m 6= n, dπn � 1 for
n ∈ N, and limn kπn(dπn −1) = ∞. The eigenvalues of |Eπn −λπnIπn | are |λπn |
with multiplicity dπn − 1, and |kπn − λπn | with multiplicity 1. So

‖E′
πn‖ϕ∞ = max{|λπn |, |kπn − λπn |} ≥

1
2
kπn ,

and hence

‖E′‖∞ ≥ sup
n∈N

‖E′
πn
‖ϕ∞ ≥ 1

2
sup
n∈N

kπn ≥
1
2

sup
n∈N

(
kπn(dπn − 1)

) 1
2

=
1
2

lim
n

(
kπn(dπn − 1)

) 1
2

= ∞.

That is E′ /∈ E∞(K̂). This contradiction proves our claim. Hence the convolu-
tion Banach algebra A(K) is not weakly amenable. ¤
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Theorem 3.4. Let G be a compact group. Then the convolution Banach alge-
bra A(G) is weakly amenable if and only if G has a closed abelian subgroup of
finite index.

Proof. Since G is a compact group, so kπ = dπ (π ∈ Ĝ). Hence, by Theorem
3.3, the convolution Banach algebra A(G) is weakly amenable if and only if
supπ∈ bG dπ < ∞. By [6], it is valid if and only if G has a closed abelian
subgroup of finite index. ¤
Remark 3.5. A locally compact group G is called almost abelian, if it has a
closed abelian subgroup of finite index. Hence for a compact group G, the
convolution Banach algebra A(G) is weakly amenable if and only if G is almost
abelian.

Proposition 3.6. Let K be a compact hypergroup. Then the convolution Ba-
nach algebra L2(K) is weakly amenable if and only if the set {π ∈ K̂ : dim π 	
1} is finite.

Proof. Note that by Theorem 3.4 of [9], the convolution Banach algebra L2(K)
is isometrically algebra isomorphic with E2(K̂). Now, by Theorem 34.35 of [4],
and an argument as Lemma 3.2, the mapping T : E2(K̂) → E2(K̂)∗ given by

〈B, T (A)〉 =
∑

π∈ bK
kπtr(BπAπ) (A ∈ E2(K̂), B ∈ E2(K̂)),

defines a Banach E2(K̂)-bimodule isomorphism between E2(K̂)
∗

and E2(K̂),
where the product of E(K̂) giving the two module multiplications. It follows
that the convolution Banach algebra L2(K) is weakly amenable if and only if
each derivation from E2(K̂) into E2(K̂) is inner.

Suppose that the set {π ∈ K̂ : dim π 	 1} is finite. Let D ∈ Z1(E2(K̂),
E2(K̂)). With the notations of the proof of Theorem 3.3, define Dπ : B(Hπ) →
B(Hπ) through

Dπ(A) = (D (Aπ))π (A ∈ B(Hπ)).
Clearly Dπ is a derivation from (B(Hπ), ‖ · ‖ϕ2) into (B(Hπ), ‖ · ‖ϕ2). So by
Proposition 3.1, there exists E(π) ∈ B(Hπ) such that ‖E(π)‖ϕ2 ≤ dπ‖Dπ‖,
and

D(Aπ) = AπE(π)− E(π)Aπ (Aπ ∈ B(Hπ)).

Further if dπ = 1, we can assume E(π) = 0. Since the set {π ∈ K̂ : dim π 	 1}
is finite, so E ∈ E2(K̂). An argument as in the proof of Theorem 3.3, shows
that D(A) = AE − EA (A ∈ E2(K̂)), and so D is inner. It follows that the
convolution Banach algebra L2(K) is weakly amenable.

Now, suppose that the set {π ∈ K̂ : dim π 	 1} is infinite. Define E ∈ E(K̂)
by Eπ = Eπ

11 (π ∈ K̂), and D : E2(K̂) → E2(K̂) by D(A) = AE − EA

(A ∈ E2(K̂)). Then by a method similar to the proof of Theorem 3.3, one can
prove that D is a derivation. Since the set {π ∈ K̂ : dim π 	 1} is infinite, so
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there exists a subset {πn : n ∈ N} of K̂ such that πm 6= πn for m 6= n, and
dπn

� 1 for n ∈ N. Let E′ ∈ E(K̂) such that D(A) = AE′−E′A (A ∈ E2(K̂)).
By an argument similar to the proof of Theorem 3.3, it can be proved that for
each n ∈ N, ‖E′

πn
‖ϕ2 ≥ 1

2 . Hence

‖E′‖22 =
∑

π∈ bK
kπ‖E′‖2ϕ2

≥
∞∑

n=1

kπ

(
1
2

)2

= ∞,

and so E′ /∈ E2(K̂). It follows that D is not inner, and so the convolution
Banach algebra L2(K) is not weakly amenable. ¤

By a method similar to the above proposition we have the following result.

Proposition 3.7. Let K be a compact hypergroup. Then each derivation from
the convolution Banach algebra A(K) into itself is inner if and only if the set
{π ∈ K̂ : dim π 	 1} is finite.

Proposition 3.8. Let K be a compact hypergroup such that x∗y is a finite set
for each x, y ∈ K. If 2 ≤ p < ∞, then the convolution Banach algebra Lp(K)
is weakly amenable if and only if K is finite or abelian.

Proof. Suppose K is infinite and non-abelian. There exist x, y ∈ K such that
εx ∗ εy 6= εy ∗ εx. Since 2 ≤ p < ∞, so if 1

p + 1
q = 1, then p ≥ q. Hence

Lp(K) ⊆ Lq(K), and so the mapping

Dx : Lp(K) → Lq(K), f 7→ εx ∗ f − f ∗ εx,

gives a well-defined derivation. We claim that Dx is non-inner. Suppose to
the contrary that Dx = adg for some g ∈ Lq(K). Then for each f ∈ Lp(K),
f ∗(εx−g) = (εx−g)∗f . Since Lp(K) is dense in L1(K), so for each f ∈ L1(K),
f ∗ (εx − g) = (εx − g) ∗ f . Let (eα) be a bounded approximate identity for
L1(K). Then with respect to the weak*-topology τw on M(K)

εx ∗ εy − εy ∗ εx = τw − lim
α

(εx ∗ (eα ∗ εy)− (eα ∗ εy) ∗ εx)

= τw − lim
α

Dx(eα ∗ εy) = τw − lim
α

adg(eα ∗ εy)

= g ∗ εy − εy ∗ g ∈ Lq(K) ⊆ L1(K).

Using the fact that εx ∗ εy 6= εy ∗ εx, and x∗y, y ∗x are finite, we conclude that
εx ∗εy−εy ∗εx is a non-zero discrete measure. Since K is compact and infinite,
it is not discrete. Therefore εx ∗εy−εy ∗εx /∈ L1(K). This contradiction shows
that Dx is non-inner. Now, it is easy to check that the well-known isometrical
Banach space isomorphism T : Lq(K) → Lp(K)∗, that given by

〈g, T (f)〉 =
∫

K

f(x)g(x)dx (f ∈ Lq(K), g ∈ Lp(K)),

defines an Lp(K)-module homomorphism. Hence the convolution Banach al-
gebra Lp(K) is not weakly amenable.
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If K is abelian, then by Proposition 2.6, the convolution Banach algebra
Lp(K) is weakly amenable. If K is a finite hypergroup, then Lp(K) = `1(K) =
C(K) = A(K), and K̂ is finite. Hence

Lp(K) ∼= Â(K) = E1(K̂) ∼= `∞ −⊕π∈ bKMdπ
(C),

and so by Exercise 4.1.3 of [7], the convolution Banach algebra Lp(K) is
amenable, and in particular is weakly amenable. ¤

Corollary 3.9. Let K be a compact hypergroup such that x ∗ y is a finite set
for each x, y ∈ K. Then the set {π ∈ K̂ : dim π 	 1} is finite if and only if K
is finite or abelian.

Proof. Clearly if K is finite or abelian, then {π ∈ K̂ : dim π 	 1} is finite.
Let K be infinite and non-abelian. Then by Proposition 3.8 the convolution

Banach algebra L2(K) is not weakly amenable. Hence by Theorem 3.6, the set
{π ∈ K̂ : dim π 	 1} is infinite. ¤

We close this paper with the following open problems.
Some open problems:

1) Is L1(K) is weakly amenable for each compact hypergroup?
2) Is L1(K) is amenable for each compact commutative hypergroup? Is this

true for each compact hypergroup?
3) What about the case 1 ≤ p < 2 for Proposition 3.8?
4) Is Corollary 3.9 is valid for each compact hypergroup?
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