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CHARACTERIZATIONS ON CHAIN RECURRENCES

Jong-Suh Park and Se-Hyun Ku

Abstract. It is well known that there is a residual subset J of the space
of C1-diffeomorphisms on a compact Riemannian manifold M such that
the maps f 7→ chain recurrent set of f and f 7→ number of chain compo-
nents of f are continuous on J. In this paper we get the flow version of
the above results on diffeomorphisms.

1. Introduction

The interesting problems in the study of dynamical systems are to under-
stand the structure of various invariant sets of a given system, and to explain
how these sets varies as the given system changes. We naturally focuss on the
region of the phase space consisting of the chain recurrent orbits. Roughly
speaking, a dynamical system is said to be chain recurrent if every orbit can
be made periodic by allowing arbitrary small jumps at arbitrary large times.

Conley [3, 4] introduced the notion of chain recurrence in study of flows
on compact spaces. Block and Franke [1] considered the chain recurrent set
of a continuous map from the interval to itself. Bronstein and Kopanskii [2]
generalized the notion of chain recurrence on the theory of dynamical systems
without uniqueness. Hurley [9, 10, 11] introduced the notion of chain recurrence
on noncompact spaces and obtained some results about the chain recurrence on
arbitrary metric spaces. Also, he introduced the alternative definition of chain
recurrence for semiflow and proved that the alternative definition is equivalent
to the usual definition. Recently, Chu and Park extended the concept of chain
recurrence to the multi-valued dynamical systems [5, 6]. In [12], Kościelniak
showed that the chain recurrent sets are Cantor sets in the space of Z2-actions
on the unit interval. Oprocha [14] extended the chain recurrent set for the
space of Zd-actions.

In [13], Newhouse proved that any residual subset of the set of Cr-diffeo-
morphisms (r > 1) on X must contain diffeomorphisms f with the number
of chain components of f is infinite. Conley [4] described chain recurrent set
in terms of attractors and showed that the chain recurrent mapping is upper

Received August 18, 2008.
2000 Mathematics Subject Classification. 37B20, 54H20.
Key words and phrases. chain recurrence, residual set, flow.

c©2010 The Korean Mathematical Society

287



288 JONG-SUH PARK AND SE-HYUN KU

semicontinuous. Moreover, Hurley [7] obtained the residual subset J of the
space of C1-diffeomorphisms on any compact Riemannian manifold X such
that the maps

f 7→ chain recurrent set for f,
f 7→ number of chain components for f

are continuous on J.
The purpose of this paper is to extend the above result to continuous flows

on a compact metric space X.
Throughout this paper, X denote a compact metric space with metric d.

2. Definitions and lemmas

A flow on X is a continuous map φ : X × (−∞,∞) → X satisfying (1)
φ(x, 0) = x for all x ∈ X and (2) φ(φ(x, s), t) = φ(x, s+ t) for all x ∈ X and for
all s, t ∈ R. We denote Φ(X) the set of all continuous flows on X. Let ε > 0 and
t > 0. For any x, y ∈ X, we say that a sequence {(xi, ti)}ni=1 is an (ε, t)-chain
from x to y for φ ∈ Φ(X) if

(1) x1 = x and ti ≥ t for all i = 1, . . . , n
(2) d(φ(xi, ti), xi+1) < ε for all i = 1, . . . , n− 1 and d(φ(xn, tn), y) < ε.

In case of t = 1, that is (ε, 1)-chain, we say that it is an ε-chain. So we can
consider a canonical equivalence relation on X. Two points x and y are said to
be chain equivalent if for every ε > 0 and every t > 0, there exists an (ε, t)-
chain from x to y and there exists an (ε, t)-chain from y to x. A point x in
X is called chain recurrent with respect to φ if x is chain equivalent to itself.
The set of chain recurrent points of φ ∈ Φ(X), denoted by CR(φ), is called
the chain recurrent set of φ. It is clear that the chain equivalence relation is an
equivalence relation on CR(φ). It is possible that the notion of chain equivalence
is changed to more simple definition, in detail, two points x, y in CR(φ) are
chain equivalent if and only if for any ε > 0 there exist two ε-chains from x to
y and from y to x. An equivalence class under this equivalence relation for φ
is called a chain component of φ. It turns out for flows on compact manifolds
that the chain components are exactly the connected components of CR(φ).
See [8].

To prove our theorem, we need some definitions and lemmas. Firstly, we
define a function ρ : Φ(X)× Φ(X) → R by setting

ρ(φ, ψ) = sup
n

min
n

max{d(φ(x, t), ψ(x, t)) : x ∈ X,−T ≤ t ≤ T}, 1

T

o
: T > 0

o

for all φ, ψ ∈ Φ(X).

Lemma 2.1. ρ is a metric on Φ(X).

Proof. Put MT (φ, ψ) = max{d(φ(x, t), ψ(x, t)) : x ∈ X,−T ≤ t ≤ T}.



CHARACTERIZATIONS ON CHAIN RECURRENCES 289

Now, let ε > 0. Since ρ(φ, ψ)− ε < ρ(φ, ψ), we have

min
{
MT (φ, ψ)

1
T

}
> ρ(φ, ψ)− ε for some T > 0.

Then there are y ∈ X and s ∈ [−T, T ] such that d(φ(y, s), ψ(y, s)) = MT (φ, ψ).
Let us check the triangle inequality ρ(φ, γ) + ρ(γ, ψ) ≥ ρ(φ, ψ) . If MT (φ, γ) ≥
1
T , then we have

ρ(φ, γ) + ρ(γ, ψ) ≥ ρ(φ, γ)

≥ min
{
MT (φ, γ),

1
T

}
=

1
T

≥ min
{
MT (φ, ψ),

1
T

}

> ρ(φ, ψ)− ε.

If MT (γ, ψ) ≥ 1
T , then we have

ρ(φ, γ) + ρ(γ, ψ) ≥ ρ(γ, ψ)

≥ min
{
MT (γ, ψ),

1
T

}
=

1
T

≥ min
{
MT (φ, ψ),

1
T

}

> ρ(φ, ψ)− ε.

On the other hand, if MT (φ, γ) < 1
T and MT (γ, ψ) < 1

T , then we have

ρ(φ, γ) + ρ(γ, ψ) ≥ min
{
MT (φ, γ),

1
T

}
+ min

{
MT (γ, ψ),

1
T

}

= MT (φ, γ) +MT (γ, ψ)
≥ d(φ(y, s), γ(y, s)) + d(γ(y, s), ψ(y, s))
≥ d(φ(y, s), ψ(y, s)) = MT (φ, ψ)

≥ min
{
MT (φ, ψ),

1
T

}

> ρ(φ, ψ)− ε.

Since ε is arbitrary, we have ρ(φ, γ) + ρ(γ, ψ) ≥ ρ(φ, ψ) . Other conditions for
ρ can be easily verified. The proof is completed. ¤

Define C0(X) by the set of all continuous flows of X to itself with the metric
ρ.

Lemma 2.2 (Integral continuity theorem). Let φ be a flow on metric space
X. Let x ∈ X and K be a compact subset of R+. For every positive number ε,
there is a positive number δ such that d(x, y) < δ implies d(φ(x, t), φ(y, t)) < ε,
for every t ∈ K.
Proof. The proof is similar to the proof of original integral continuity theorem.

¤
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Let X1 be a metric space and X2 a compact metric space. And let F (X2)
be the set of all closed nonempty subsets of X2 with the Hausdorff metric

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
, A,B ∈ F (X2).

A map f : X1 → F (X2) is called upper(lower) semicontinuous at x ∈ X1

if for any ε > 0 there exists δ > 0 such that if d(x, y) < δ, then f(y) ⊂
B(f(x), ε)(f(x) ⊂ B(f(y), ε)) respectively. Recall that a subset S of a topo-
logical space X is residual if S can be realized as a countable intersection of
open dense subsets of X.

Remark 2.3 ([15]). A map f : X1 → F (X2) is lower semicontinuous at x ∈ X1

if and only if for any open subset U of X2 with U ∩ f(x) 6= ∅, there exists a
neighborhood V of x in X1 such that U ∩ f(y) 6= ∅ for all y ∈ V.

Similarly, f is upper semicontinuous at x ∈ X1 if and only if for any open
neighborhood U of f(x), there exists a neighborhood V of x in X1 such that
f(y) ⊆ U for all y ∈ V.
Lemma 2.4 ([7]). Let f : X1 → F (X2) be either upper or lower semicontinu-
ous. Then the set of all continuity points of f is a residual subset of X1.

Lemma 2.5. Assume that a sequence (φn) converges to φ in C0(X) a sequence
(xn) converges to x and a sequence (yn) also converges to y in X. Suppose that
every positive integer n and positive number ε, there exists an ε-chain for φn
from xn to yn. Then for every ε > 0, there is an ε-chain for φ from x to y.

Proof. Let 0 < ε < 1 be arbitrary. For any a ∈ X, by integral continu-
ity theorem, there exists 0 < δ(a) < ε

3 such that if d(a, x) < δ(a), then

d(φ(a, t), φ(x, t)) < ε
12 for all 1 ≤ t ≤ 2. Then

{
B(a, δ(a)2 ) : a ∈ X

}
is an open

cover of X. Since X is compact, there are finitely many points a1, . . . , an ∈ X
such that X =

⋃n
i=1B(ai,

δ(ai)
2 ). Put δ = 1

2 min{δ(a1), . . . , δ(an)} and let
d(x, y) < δ. Then there exists i such that x ∈ B(ai,

δ(ai)
2 ). Since d(ai, x) <

δ(ai)
2 , d(φ(ai, t), φ(x, t)) < ε

12 for all 1 ≤ t ≤ 2. Since

d(ai, y) ≤ d(ai, x) + d(x, y) <
δ(ai)

2
+ δ ≤ δ(ai)

2
+
δ(ai)

2
= δ(ai),

we have d(φ(ai, t), φ(y, t)) < ε
12 for all 1 ≤ t ≤ 2. Thus we obtain that

d(φ(x, t), φ(y, t)) ≤ d(φ(x, t), φ(ai, t)) + d(φ(ai, t), φ(y, t)) <
ε

12
+

ε

12
=
ε

6
for all 1 ≤ t ≤ 2.

Let ρ(φ, ψ) < ε
6 . Since 1

6 > ε
6 > ρ(φ, ψ) ≥ min{M6(φ, ψ), 1

6}, we have
M6(φ, ψ) < ε

6 . Thus d(φ(x, t), ψ(x, t)) < ε
6 for all x ∈ X and all −6 ≤ t ≤ 6.

Hence if d(x, y) < δ, then we have

d(φ(x, t), ψ(y, t)) ≤ d(φ(x, t), φ(y, t)) + d(φ(y, t), ψ(y, t)) <
ε

6
+
ε

6
=
ε

3
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for all 1 ≤ t ≤ 2. Choose a positive integer m such that ρ(φ, φm) < ε
3 , d(x, xm)

< δ and d(y, ym) < δ. By assumption, we select ε
3 -chain {(zi, ti)}ni=1 for φm from

xm to ym. We may assume that 1 ≤ ti ≤ 2 for all i. Since d(x, xm) < δ, we have
d(φ(x, t1), φm(xm, t1)) < ε

3 . Since d(φm(xm, t1), z2) = d(φm(z1, t1), z2) < ε
3 , we

get

d(φ(x, t1), z2) ≤ d(φ(x, t1), φm(xm, t1)) + d(φm(xm, t1), z2) <
ε

3
+
ε

3
< ε.

Since d(φm(zi, ti), zi+1) < ε
3 and d(φm(zi, ti), φ(zi, ti)) < ε

3 for all 1 ≤ i ≤ n−1,
we have d(φ(zi, ti), zi+1) < ε for all 1 ≤ i ≤ n− 1. Then we get

d(φ(zn, tn), y) ≤ d(φ(zn, tn), φm(zn, tn)) + d(φm(zn, tn), ym) + d(y, ym)

<
ε

3
+
ε

3
+ δ < ε

Thus {(x, t1), (z2, t2), . . . , (zn, tn)} is an ε-chain for φ from x to y. This com-
pletes the proof. ¤

3. Main results

Now, we consider a map CR sending a continuous flow φ in C0(X) to a chain
recurrent set CR(φ) for φ. Also we consider a function N from a continuous
flow φ in C0(X) to a number N(φ) of chain components in the extended half
line [0,∞] (viewed as the one-point compactification of [0,∞)). The following
is our main theorem.

Main Theorem. There is a residual subset R of C0(X) such that the maps
CR and N are continuous at each point of R.

Proof. Firstly, we will show that there is a residual subset R1 of C0(X) such
that the map CR is continuous at each point of R1. Suppose that CR is not
upper semicontinuous at φ ∈ C0(X). Then we can choose ε > 0 such that for
each n > 0 there exists φn ∈ C0(X) such that ρ(φn, φ) < 1

n and CR(φn) *
B(CR(φ), ε). Thus we can select xn ∈ CR(φn) satisfying d(xn, CR(φ)) ≥ ε. We
may assume that xn → x ∈ X. Then we have d(x,CR(φ)) ≥ ε. Since φn → φ
and xn ∈ CR(φn), by Lemma 2.5, we get x ∈ CR(φ). This is a contradiction,
which completes the assertion. From Lemma 2.4, there is a residual subset R1

of C0(X) such that CR is continuous at each point of R1.
Next, we are going to show that there is a residual subset R of R1 such

that the map N is continuous at each point of R. It is enough to show that
the map N : R1 → [0,∞] is lower semicontinuous. Let φ ∈ R1. There are
two cases depending upon whether N(φ) < ∞ or not. In the first case N(φ)
is finite. Thus we can list the φ-chain components M1, . . . ,Mk. Then there
is ε > 0 such that B(Mi, ε) ∩ B(Mj , ε) = ∅ if i 6= j. Since the map CR is
continuous, by Remark 2.3, we can choose δ > 0 such that if ρ(φ, ψ) < δ, then
CR(ψ) ⊂ B(CR(φ), ε) and CR(ψ)∩B(Mi, ε) 6= ∅ for all i = 1, . . . , k. Let A be
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a chain component of CR(ψ). Then we have

A ⊂ CR(ψ) ⊂ B(CR(φ), ε) ⊂
k⋃

i=1

B(Mi, ε) .

Thus we obtain

A = A ∩
k⋃

i=1

B(Mi, ε) =
k⋃

i=1

(
A ∩B(Mi, ε)

)
.

Since A is a connected component in CR(ψ), there exists a unique i satisfying
A ∩ B(Mi, ε) 6= ∅. Hence we have A ⊂ B(Mi, ε). For any i = 1, . . . , k, since
CR(ψ)∩B(Mi, ε) 6= ∅, we can choose at least one chain component B of CR(ψ)
such that B ⊂ B(Mi, ε). This implies that N(φ) ≤ N(ψ).

In the remaining case N(φ) is infinite. For each n ∈ Z+, we can choose
δ(n) > 0 such that if ρ(φ, ψ) < δ, thenN(ψ) ≥ n. This means that limψ→φN(ψ)
is also infinite. Hence N is lower semicontinuous at φ. By Lemma 2.4, we can
find the residual subset R of R1 satisfying CR and N are continuous at each
point of R. Since a residual subset of residual set is also residual, the proof is
completed. ¤
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