DOI QR코드

DOI QR Code

Comparative study on effects of volume-controlled ventilation and pressure-limited ventilation for neonatal respiratory distress syndrome

신생아 호흡곤란 증후군에서 volume-controlled ventilation과 pressure-limited ventilation의 효과에 관한 비교연구

  • 김재진 (대구파티마병원 소아청소년과) ;
  • 황문종 (대구파티마병원 소아청소년과) ;
  • 이상길 (대구파티마병원 소아청소년과)
  • Received : 2009.07.28
  • Accepted : 2009.11.02
  • Published : 2010.01.15

Abstract

Purpose : In contrast with traditional time-cycled, pressure-limited ventilation, during volume-controlled ventilation, a nearly constant tidal volume is delivered with reducing volutrauma and the episodes of hypoxemia. The aim of this study was to compare the efficacy of pressure-regulated, volume controlled ventilation (PRVC) to Synchronized intermittent mandatory ventilation (SIMV) in VLBW infants with respiratory distress syndrome (RDS).Methods : 34 very low birth weight (VLBW) infants who had RDS were randomized to receive either PRVC or SIMV with surfactant administration : PRVC group (n=14) and SIMV group (n=20). We compared peak inspiratory pressure (PIP), duration of mechanical ventilation, and complications associated with ventilation, respectively with medical records. Results : There were no statistical differences in clinical characteristics between the groups. After surfactant administration, PIP was significantly lower during PRVC ventilation for 48hrs and accumulatevive value of decreased PIP was higher during PRVC ventilation for 24hrs (P<0.05). Duration of ventilation and incidence of complications was no significant difference. Conclusion : PRVC is the mode in which the smallest level of PIP required to deliver the preset tidal volume in VLBW infants with RDS, adaptively responding to compliance change in lung after surfactant replacement.

목 적 : 인공호흡기 사용과 관련된 폐손상에 대한 연구가 활발히 이루어져 왔다. 특히 전통적 압력조절방식의 인공호흡기 사용시 발생하는 용적손상의 중요성이 밝혀지면서 신생아 호흡 곤란 증후군의 치료에서 용적조절방식의 인공호흡기가 부각되고 있다. 이에 저자들은 신생아 호흡곤란 증후군 환아를 대상으로 전통적 압력조절방식의 SIMV와 용적조절방식을 바탕으로 한 PRVC를 비교분석하고자 하였다. 방 법 : 2007년 5월부터 2008년 4월까지 대구파티마병원 신생아 중환자실에 입원한 환아중 출생 체중이 1,500 g 미만이고 신생아 호흡곤란 증후군이 있어 기도삽관에 의한 인공호흡기 치료 및 폐표면 활성제를 투여한 환아 34명을 대상으로 하여 PRVC 사용군 14명, SIMV 사용군 20명으로 나누어 비교하였다. 폐표면 활성제 투여 후 시간경과에 따른 PIP값의 변화, 감압된 PIP의 누적값, 기도발관까지의 기간, 그리고 전체 인공호흡기 사용기간을 조사하였고, 주요 합병증인 폐외 공기 누출, 기관지폐 이형성증, 폐고혈압, 미숙아 망막증, 뇌실내 출혈, 동맥관 개존증의 빈도를 조사하였다. 결 과 : 재태연령, 출생시 체중, 성별, 극소 저출생 체중아 비율, 1분 및 5분 Apgar 점수, 호흡 곤란 증후군 등급, 폐표면 활성제 투여 횟수 및 분만 방법, 산모의 임신성 고혈압, 조기양막파수 유무에서 두 군간의 임상적 특성 차이는 없었다. 폐표면 활성제 투여 전 및 투여 후 48시간까지의 PIP값은 PRVC군에서 보다 낮게 측정되었고, 투여 후 24시간까지 PRVC군에서 PIP의 감압이 더 잘 이루어 졌다(P<0.05). 기도발관까지 걸린 시간과 전체 인공호흡기 사용기간, 합병증의 발생 빈도 및 퇴원시점까지 소요된 시간 비교에서는 의미있는 차이는 없었다. 결 론 : SIMV군에 비해 PRVC군에서 PIP 값이 낮고, 폐표면 활성제 투여 후 감압이 더 잘 이루어졌다. 급변하는 폐유순도에 상응하는 감압에 있어 PRVC군이 더 유리하다고 볼 수 있다. 호흡기 이탈기간 및 합병증의 발생에 있어 차이는 없었으나, 잠재적인 폐의 용적손상과 관련 기존 SIMV군에서 필요 이상의 PIP가 설정되었던 것으로 생각되는 바, 이는 앞으로 더 많은 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Jaecklin T, Morel DR, Rimensberger PC. Volume-targeted modes of modern neonatal venilators : how stable is the delivered tidal volume? Intensive Care Med 2007;33:326-35 https://doi.org/10.1007/s00134-006-0450-9
  2. Sinha SK, Donn SM. Volume-controlled ventilation variations on a theme. Clin Perinatol 2001;28:547-60 https://doi.org/10.1016/S0095-5108(05)70106-8
  3. de Moraes MA, Bonatto RC, Carpi MF, Ricchetti SMQ, Padovani CR, Fioretto JR. Comparison between intermittent mandatory ventilation and synchronized intermittent mandatory ventilation with pressure support in children. J Pediatr 2009;85:15-20 https://doi.org/10.1590/S0021-75572009000100004
  4. Cleary JP, Bernstein G, Mannino FL, Heldt GP. Improved oxygenation during synchronized intermittent mandatory ventilation in neonates with respiratory distress syndrome : a randomized, crossover study. J Pediatr 1995;126:407-11 https://doi.org/10.1016/S0022-3476(95)70460-4
  5. Ramanathan R, Sekar K. Synchronized intermittent mandatory ventilation and pressure support: To sync or not to sync? Pressure support or no pressure support? J Perinatol 2005;25 Suppl 2:S23-5
  6. Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;160:109-16
  7. Network TARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000;342:1301-8 https://doi.org/10.1056/NEJM200005043421801
  8. Kim JE, Kwon EY, Wen S, Jung JA, Lee YA, Kim JP. Availability of volume guaranteed ventilation in very low birth weight Infants. J Korean Soc Neonatol 2007;14:192-8
  9. Macintyre NR, Cook DJ, Epstein SK, Fink JB, Heffner JE, Hess D, et al. Evidence-based guidelines for weaning and discontinuing ventilatory support. Chest 2001;120:375-95 https://doi.org/10.1378/chest.120.6_suppl.375S
  10. Patel DS, Sharma A, Predergast M, Rafferty GF, Greenough A. Work of breathing and different levels of volume-targeted ventilation. Pediatrics 2009;123:679-84 https://doi.org/10.1542/peds.2008-2635
  11. Bancalari E, Claure N. Definitions and diagnostic criteria for bronchopulomonary dysplasia. Semin Perinatol 2006;30:164-70 https://doi.org/10.1053/j.semperi.2006.05.002
  12. An international classification of retinopathy of prematurity. II. The classification of retinal detachment. The international committee for the classification of the late stage of retinopathy of prematurity. Arch Ophthalmol 1987;105:906-12 https://doi.org/10.1001/archopht.1987.01060070042025
  13. Perlman JM, Rollins N. Serveillance protocol for the detection of intracranial abnormalities in premature neonates. Arch Pediatr Adolesc Med 2000;154:822-6
  14. Yeh TF, Luken JA, Thalji A, Raval D, Carr I, Pildes RS. Intravenous indomethacin therapy in premature infants with persistent ductus arteriosus. J Pediatr 1981;98:137-45 https://doi.org/10.1016/S0022-3476(81)80560-4
  15. Hernandez LA, Peevy KJ, Moise AA, Parker JC. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl physiol 1989;66:2364-8 https://doi.org/10.1152/jappl.1989.66.5.2364
  16. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974;110:556-65
  17. Kolobow T, Moretti MP, Fumagalli R, Mascheroni D, Prato P, Chen V, et al. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 1997;14:99-110
  18. Clark RH, Gerstmann DR, Jobe AH, Moffitt ST, Slutsky AS, Yoer BA. Lung injury in neonate: causes strategies for prevention, and long-term consequences. J Pediatr 2001;139:476-86 https://doi.org/10.1067/mpd.2001.118879
  19. Pierce MR, Bancalari E. The role of inflammation in the pathogenesis of bronchopulmonary dysplasia. Ped Pulmonol 1995;19:371-8 https://doi.org/10.1002/ppul.1950190611
  20. Herrera CM, Gerhardi T, Claure N, Evereti R, Musante G, Thomas C, et al. Effects of volume-guaranteed synchronized intermittent mandatory ventilation in preterm infants recovering from respiratory failure. Pediatrics 2002;110:529-33 https://doi.org/10.1542/peds.110.3.529
  21. Cheema IU, Ahluwalila JS. Feasibility of tidal volume-guided ventilation in newborn infants: a randomized, crossover trial using the volume guarantee modality. Pediatrics 2001;107:1323-8 https://doi.org/10.1542/peds.107.6.1323
  22. Abubakar KM, Keszler M. Patient-ventilator interactions in new modes of patient-triggered ventilation. Pediatr Pulmonol 2001;32:71-5 https://doi.org/10.1002/ppul.1091
  23. Lista G, Colnaghi M, Castoldi F, Condo V, Reali R, Compagnoni G, et al. Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome(RDS). Pediatr Pulmonol 2004;37:510-4 https://doi.org/10.1002/ppul.10458
  24. Keszler M, Abubakar K. Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 2004;38:240-5 https://doi.org/10.1002/ppul.20063
  25. Bolivar JM, Gerhardt T, Gonzalez A, Hummler h, Claure N, Everett R, et al. Mechanisms for episodes of hypoxaemia in preterm infants undergoing mechanical ventilation. J Pediatr 1995;127:767-73 https://doi.org/10.1016/S0022-3476(95)70171-0
  26. Singh J, Sinha SK, Clarke P, Byrne S, Donn SM. Mechanical ventilation of very low birth weight infants: Is volume or pressure a better target variable? J Pediatr 2006;149:308-13 https://doi.org/10.1016/j.jpeds.2006.01.044
  27. Donn SM, Sinha SK. Newer modes of mechanical ventilaton of the neonate. Curr Opin Pediatr 2001;13:99-103 https://doi.org/10.1097/00008480-200104000-00002
  28. Piotrowski A, Sobala W, Kawczynski P. Patient-initiated, pressure-regulated, volume-controlled ventilation compared with intermittent mandatory ventilation in neonates : a prospective, randomised study. Intensive Care Med 1997;23:975-81 https://doi.org/10.1007/s001340050441
  29. The OSIRIS Collaborative Group. Early versus delayed neonatal administration of a synthetic surfactant the judgment of OSIRIS. Lancet 1992;340:1363-9 https://doi.org/10.1016/0140-6736(92)92557-V
  30. Van Marter LJ, Pagano M, Allred EN, Leviton A, Kuban KC. Rate of bronchopulmonary dysplasia as a function of neonatal intensive care practice. J Pediatr 1992;120:938-46 https://doi.org/10.1016/S0022-3476(05)81968-7
  31. Cowan F, Thoresen M. The effect of intermittent positive pressure ventilation on cerevral arterial and venous blood velocities in the newborn infants. Acta Paediatr Scand 1987;76:239-47 https://doi.org/10.1111/j.1651-2227.1987.tb10454.x
  32. Sinha SK, Donn SM, Gavey J, McCarty M. Randomised trial of volume controlled versus time cycled, pressure limited ventilation in preterm infants with respiratory distress syndrome. Arch Dis Child Fetal Neonatal Ed 1997;77:202-5 https://doi.org/10.1136/fn.77.3.F202