DOI QR코드

DOI QR Code

Effects on Tensile Strength and Elasticity after Treatment with Glutaraldehyde, Solvent, Decellularization and Detoxification in Fresh Bovine Pericardium

소의 심낭 고정에서 용매 처치, 무세포화 혹은 항독성화 처치가 조직의 장력 및 신장도에 미치는 영향

  • Jang, Woo Sung (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Kim, Yong Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Kim, Soo Hwan (Seoul National University Hospital, Clinical Research Institute, Xenotransplantation Research Center)
  • 장우성 (서울대학교병원 흉부외과) ;
  • 김용진 (서울대학교병원 흉부외과) ;
  • 김수환 (서울대학교병원 임상의학연구소)
  • Received : 2009.08.18
  • Accepted : 2009.09.09
  • Published : 2010.02.05

Abstract

Background: Bioprosthetic materials have been made using glutaraldehyde fixation of porcine or bovine pericardium during cardiovascular surgery. But these bioprostheses have the problems of calcification and mechanical failure. We determined changes in tensile strength and elasticity of pericardium after glutaraldehyde, solvent, decellularization and detoxification. Material and Method: Tissues were allocated to four groups: glutaraldehyde with and without solvent, decellularization, and detoxification. We studied tensile strength and strain on tissues. We measured the tensile strength of fresh pericardium stretched in six directions (with 5 mm width), and % strain, which we calculated from the breaking point when we pulled the pericardium in two directions. Result: Tensile strength was reduced when we used the usual concentrated glutaraldehyde fixation (n=83, $MPa=11.47{\pm}5.40$, p=0.006), but there was no change when we used solvent. Elasticity was increased after glutaraldehyde fixation (n=83, strain $(%)=24.55{\pm}9.81$, p=0.00), but there was no change after solvent. After decellularization of pericardium, the tensile strength was generally reduced. The decrease in tensile strength after concentrated glutaraldehyde fixation for a long time was significantly greater less than after concentrated solvent (p=0.01, p=0.00). After detoxification, the differences in strength and strain were not significant. Conclusion: After glutaraldehyde treatment of pericardium there is no loss in tensile strength (even though we did the glutaraldehyde, solvent and detoxification treatments LOGIC IS UNCLEAR). Also, these treatments had a tendency to increase elasticity. Although post-treatment decellularization led to a significant loss in strength, this effect could be attenuated using a low concentration of solvent or hypertonic solution.

배경: 심장 혈관계 수술에서 인공 조직 보철편은 주로 소나 돼지 판막, 심낭의 글루타알데하이드 고정 방법을 사용하고 있으나 중장기적으로 이식편의 석회화 및 물리-기계적인 결함이 문제시 되고 있다. 이 중 본 연구에서는 소의 심낭에 글루타알데하이드 고정, 용매, 무세포화, 항독성화 처리가 조직의 물리-기계적 장력 및 신장도에 미치는 영향을 알아보고자 하였다. 대상 및 방법: 아무런 처리를 하지 않은 신선한 소의 심낭과 여러 방법의 글루타알데하이드 고정 및 용매 첨가 그룹, 무세포화 그룹, 항독성화 처리 그룹 등으로 나누어 각 조직의 물리-기계적 장력 및 신장도 검사를 시행하였다. 심낭을 30도 각도로 달리하여 얻어낸 6가지 방향에 대하여 폭 5 mm에 대한 인장 강도를 구하여 장력을 측정하였고, 양방향으로 늘려 끊어지는 시점에서의 길이를 측정하여 늘어난 정도를 구하여 신장도를 측정하였다. 결과: 1) 상용 농도의 글루타알데하이드 고정시 장력이 감소하며(n=83, $MPa=11.47{\pm}5.40$, p=0.006) 용매를 첨가하였을 때 장력의 변화는 관찰되지 않았다. 신장도는 글루타알데하이드 고정시 늘어났으며(n=83, strain $(%)=24.55{\pm}9.81$, p=0.00), 용매 첨가시 신장도의 변화는 관찰되지 않았다. 2) 무세포화 처리시 대부분의 장력은 감소하는 경향을 보였으며(p>0.05) 장기간 저농도 용액 처리, 고농도의 세정용매 처리시 장력의 감소가 통계적으로 유의했으며(p=0.01, p=0.00), 신장도는 늘어나는 경향을 보였다. 3) 항독성화 처리 시 장력 및 신장도에 유의한 차이를 보이지 않았다. 결론: 소의 심낭에 글루타알데하이드 고정, 용매, 항독성화 처리 후에는 장력 손실이 관찰되지 않으며 신장도는 증가하는 경향을 보였다. 무세포화에 따른 장력의 손실이 뚜렷하였으나 저 농도 세정제 사용과 고농도 용액처리를 보강한 무세포화 처리에서는 장력의 손실이 향상되었다. 계속해서 더 나은 이식 보철편개발을 위한 다양한 용매의 연구 개발이 필요하다.

Keywords

Acknowledgement

Supported by : 보건복지가족부

References

  1. Opie JC, Larrieu AJ, Cornell IS. Pericardial substitutes: delayedexploration and findings. Ann Thorac Surg 1987;3:383-5
  2. Carpentier A, Nashef A, Carpentier S, Ahmed A, Goussef N. Technique for prevention of calcification of valvular bioprosthesis. Circulation 1984;70(Suppl I):165-8 https://doi.org/10.1161/01.CIR.70.2.165
  3. Nimni ME. The cross-linking and structure modification of the collagen matrix in the design of cardiovascular prosthesis. J Cardiac Surg 1988;3:523-33 https://doi.org/10.1111/j.1540-8191.1988.tb00446.x
  4. Webb CL, Benedict JJ, Schoen FJ, Linden LA, Levy RJ. Inhibition of bioprosthetic heart valve calcification with aminodiphosphonate covalently bound to residual aldehyde groups. Ann Thorac Surg 1988;46:309-16 https://doi.org/10.1016/S0003-4975(10)65932-2
  5. Sung HW, Hsu CS, Lee YS, Lin DS. Crosslinking characteristics of an epoxy-fixed porcine tendon: effects of pH, temperature, and fixative concentration. J Biomed Mater Res 1998;31:511-8 https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<511::AID-JBM11>3.0.CO;2-J
  6. Zilla P, Weissenstein C, Human P, Dower T, Oppell UO. High glutaraldehyde concentrations mitigate bioprosthetic root calcification in the sheep model. Ann Thorac Surg 2000;70:2091-5 https://doi.org/10.1016/S0003-4975(00)02011-7
  7. Kim KC, Lee C, Choi CH, et al. Development of porcine pericardial heterograft for clinical application (tensile strength- thickness). Korean J Thorac Cardiovasc Surg 2008;41:170-6
  8. Gratzer PF, Pereira CA, Lee JM. Solvent environment modulates effects of glutaraldehyde crosslinking on tissue-derived biomaterials. J Biomed Mater Res 1996;31:533-43 https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<533::AID-JBM14>3.0.CO;2-H
  9. Zilla P, Weissenstein C, Human P, Dower T, Oppell UO. High glutaraldehyde concentrations mitigate bioprosthetic root calcification in the sheep model. Ann Thorac Surg 2000;70:2091-5 https://doi.org/10.1016/S0003-4975(00)02011-7
  10. Pathak CP, Adams AK, Simpson T, Phillips RE, Moore MA. Treatment of bioprosthetic heart valve tissue with long chain alcohol solution to lower calcification potential. J Biomed Mater Res 2004;69:140-4
  11. Stein PD, Riddle JM, Kemp SP, et al. Effect of warfarin on calcification of spontaneously degenerated porcine bioprosthetic valves. J Thorac Cardiovasc Surg 1985;90:119-25
  12. Golomb G, Ezra V. Prevention of bioprosthetic heart valve tissue calcification by charge modification: effects of protamine binding by formaldehyde. J Biomed Mater Res 1991;25:85-98 https://doi.org/10.1002/jbm.820250107
  13. Gratzer PF, Pereira GA, Lee JM. Solvent environment modulates effects of glutaraldehyde crosslinking on tissue-derived biomaterials. J Biomed Mater Res 1996;31:533-43 https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<533::AID-JBM14>3.0.CO;2-H
  14. Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, Deruiter MC. Decellularizarion of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003;126:2003-10 https://doi.org/10.1016/S0022-5223(03)00956-5
  15. Sung SC, Kim YJ, Choi SY, Park JE, Kim KW, Kim WH. A study on an effective decelularization technique for a xenograft cardiac valve: the effect of osmotic treatment with hypotonic solution. Korean J Thorac Cardiovasc Surg 2008;41:679-86
  16. Wilcox HE, Korossis SA, Booth A, et al. Biocompatibility and recellularization potential of an acellular porcine heart valve matrix. J Heart Valve Dis 2005;14:228-37
  17. Park CS, Kim YJ, Sung SC, et al. Study on an effective decellularization technique for cardiac valve, arterial wall and pericardium xenografts: optimization of decellularization. Korean J Thorac Cardiovasc Surg 2008;41:550-62

Cited by

  1. 돼지 대동맥, 폐동맥의 근위부 기하학적 구조 측정을 통한 판막 구조 수치의 계량화와 판막 도안에 관한 연구 vol.43, pp.6, 2010, https://doi.org/10.5090/kjtcs.2010.43.6.602