Effect of Extraction Process on the Physicochemical Characteristics of Seed Oil of Camellia sinensis

추출 공정에 따른 Camellia sinensis 오일의 물리화학적 특성에 관한 연구

  • Kim, Youn-Soon (Department of Home economics Education, Chosun University) ;
  • Kim, Ran (Department of Cosmetics, Wonkwang Health Science University) ;
  • Na, Myung-Soon (Department of Total Beauty, Jeonnam Provinclal College) ;
  • Choi, DuBok (Department of Environmental Health, Cho-dang University)
  • 김연순 (조선대학교 사범대학 가정교육과) ;
  • 김란 (원광보건대학 미용피부관리과) ;
  • 나명순 (전남도립대학 토탈뷰티미용과) ;
  • 최두복 (초당대학교 이공대학 환경보건학과)
  • Received : 2009.10.20
  • Accepted : 2009.11.10
  • Published : 2010.04.10

Abstract

This study was carried out to investigate the effect of extraction methods on the physicochemical characteristics using seed oil of wild green tea (Camellia sinensis). When the solvent extraction method after grinding and steam treatment (SGS) was used for oil extraction, the yield was highest. The specific gravity was a range of $0.91{\sim}0.94g/cm^{3}$ irrespective of extraction methods of oil. However, the light in the solvent extraction method after grinding (SG), the red in the pressure extraction method after grinding and roasting treatment (PGR), and the yellow in SG method were highest. Among various fatty acids, the concentrations of C16 : 0, C18 : 1 and C18 : 2 were highest, irrespective of extraction methods. Especially, the C16 : 0 concentration was in the order of SG (34.78%), SGS (23.04%), and PRGS method (23.01%), the C18 : 1 concentration was in the order of PGR (43.35%), SGS (42.7%), SG method (39.0%), and in the case of C18 : 2, it was in order of PGR (23.15%), SGS (23.03%), and SG method (15.01%). The saturated fatty acid concentration was in the order of SG (40.59%), PGR (31.61%), and SGS method (30.1%). On the other hand, in the case of the unsaturated fatty acid, it was in the order of SGS (69.9%), PGR (68.39%), and SG method (59.41%). The acid values in the SGS and SG method after 10 days of storage were in the range of 6~8 mgKOH/g. However, in the case of PGR method, it was increased with the increase of storage time and was 49.3 mgKOH/g after 60 days. The peroxide values in the SGS and SG method were in the range of 60~100 mEq/g from 10 to 60 days of storage. On the other hand, when the storage time was increased from 10 to 30 days, it was sharply increased from 60 to 240 mEq/g. The rancidity was in the order of $Fe^{2+}$, $Cu^{2+}$, $Cr^{2+}$, $Zn^{2+}$ and $Ni^{2+}$, irrespective of extraction methods. Especially, when butylated hydroxyanisole (BHA) was added into oil containing 1.0 ppm of <$Fe^{2+}$, the peroxide value was decreased from 539.4 to 216.6%. These results show that seed oil of Camellia sinensis grown in Iksan can be applied as sources for cosmetics, detergents, food, and pharmaceuticals.

본 연구는 녹차씨의 다양한 용도개발을 위한 기초자료를 얻기 위해 추출방법에 따른 녹차씨유의 물리화학적 특성 및 저장에 따른 안정성 테스트를 하였다. 녹차씨유의 수율은 SGS법을 이용할 경우 수율이 가장 높게 나타났고 비중은 추출방법에 관계없이 $0.91{\sim}0.94g/cm^{3}$ 범위였다. 명도는 SG법을 이용할 때가 가장 밝았으며, 적색도는 PRGS법을 이용할 경우가 가장 높게 나타났고 황색도의 경우는 SG법을 이용할 경우가 가장 높았다. 여러 지방산 중에서 C16 : 0, C18 : 1, 및 C18 : 2가 농도가 가장 높았다. 특히 C18 : 1 농도는 PGS (43.35%) > SGS (42.7%) > SG (39.0%)법의 순으로 다른 지방산에 비해 높은 수준이었다. 포화 지방산 농도는 SG (40.46%) > PGR (31.49%) > SGS (29.96%)법 순이었고 불포화 지방산의 경우는 SGS (69.9%) > PGR (68.39%) > SG (59.41%) 법 순이었다. SGS 및 SG법에 의해 추출된 녹차씨유의 산가는 저장기간이 10일 이후부터는 $6{\sim}8mgKOH/g$ 범위였다. 그러나 PGR법에 의해 추출된 녹차씨유의 산가는 저장기간과 비례하여 저장 60일 후에 49.3 mgKOH/g였다. SGS 및 SG법에 의해 추출된 녹차씨유의 과산화물가는 저장기간 10일부터 60일까지는 60~100 mEq/g 범위였다. 그러나 PGR법에 의해 추출된 녹차씨유의 과산화물가는 저장기간이 10일에서 30일로 증가할 경우 평균 60에서 240 mEq/g로 증가했다. 녹차씨유의 산패축진 작용도는 추출방법에 관계없이 $Fe^{2+}$ > $Cu^{2+}$ > $Cr^{2+}$ > $Zn^{2+}$ > $Ni^{2+}$의 순서로 나타났다. 특히 $Fe^{2+}$이 함유된 녹차씨유에 BHA을 첨가할 경우 과산화물가는 평균 60%가 감소하였고 $Cu^{2+}$의 경우는 평균 63%가 감소하였다. 이상의 결과는 녹차(Camellia sinensis) 씨유는 화장품, 세제, 그리고 식의약품 재료로써 가치가 있다고 사료된다.

Keywords

Acknowledgement

Supported by : 조선대학교

References

  1. S. K. Chung, M. Y. Kim, Y. C. Kim, K. Iwai, and H. Mastsue, Food Sci. Biotechnol., 13, 197 (2004)
  2. D. J. Millin, Factors affecting quality of tea, pp. 127-160. In: Quality control in the food industry. Herschduerter SM (Ed). Acadenic Press, London, UK (1987)
  3. D. B. A. Ogutuga and D. H. Northcote, J. Exp. Bot., 21, 258 (1970) https://doi.org/10.1093/jxb/21.2.258
  4. G. Faaina, A. Buffa, R. Benellir, O. E. Vamier, D. M. Noonan, and A. Albini, AIDS, 16, 939 (2002) https://doi.org/10.1097/00002030-200204120-00020
  5. F. L. Guillot, A. Malmoe, and R. H. Stadler, J. Agric. Food Chem., 44, 2503 (1996) https://doi.org/10.1021/jf9508155
  6. X. Chunhua, Z. Quanfen, and T. Jihua, J. Tea Sci., 6, 15 (1986)
  7. C. P. Cha, and G. C. Yen, J. Agr. Food. Chem., 54, 779 (2006) https://doi.org/10.1021/jf052325a
  8. W. H. Yoon, J. H. hoi, K. H. Lee, and C. H, Kim, Kor. J. Food. Sci. Technol., 37, 108 (2005)
  9. J. K. Yang, B. K. Kang, J. M. Kim, Y. G. Park, and M. S. Choi., J. Korea. Tea. Soc., 6, 83 (2000)
  10. H. Cho, J. S. Lee, and D. B. Choi, J. tea cult. Ind., 4, 121 (2008)
  11. Official methods of analysis of AOAC, vol. II (16 th ed), 41, Oils and fats, Virginia, 1-53 (1995)
  12. D. E. Fenwick and D. Oakenful, J. Sci. Food Agric., 34, 186 (1983) https://doi.org/10.1002/jsfa.2740340212
  13. O. S. Kim, H. E. Lee, and W. K. Choe, Kor. J. Nutrition, 39, 748 (2006)
  14. J. D. Kim, S. J. Kim, H. S. Kim, K. H. Park, H. S. Lee, and O. J. Jin, New cosmatis, DongHwa tech. Press (2nd), Seoul, 105-107 (2004).
  15. R. J. Shamberger, T. L. Andreone, and C. E. Wills, J. Nat. Cancer Inst., 53, 1771 (1974)
  16. R. J. Shamberger, B. A. Shamberger, and C. E. Will, J. Nutr., 107, 104 (1977) https://doi.org/10.1093/jn/107.1.104
  17. E. N. Frankel, J. Am. Oil. Chem., Soc., 61, 1908 (1984) https://doi.org/10.1007/BF02540830