DOI QR코드

DOI QR Code

Differential expression of rice calmodulin promoters in response to stimuli and developmental tissue in transgenic tobacco plants

  • Kim, Yu-Jung (Environmental Biotechnology National Core Center and PMBBRC, Gyeongsang National University) ;
  • Cho, Eun-Kyung (Department of Bio Food Materials, College of Medical Life Science, Silla University) ;
  • Lee, Soo-In (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lim, Chae-Oh (Environmental Biotechnology National Core Center and PMBBRC, Gyeongsang National University) ;
  • Choi, Young-Ju (Department of Food and Nutrition, College of Medical Life Science, Silla University)
  • Published : 2010.01.31

Abstract

The promoters of OsCaM1 and OsCaM3 were characterized after sequencing and fused to the reporter gene, GUS. The constructs were then transformed into the tobacco plant. Histochemical analysis of GUS showed different expression patterns in pOsCaM1::GUS and pOsCaM3:: GUS transgenic plants. The expression of pOsCaM1::GUS in 4- to 15-day-old seedlings in particular was observed only in the root, while the expression of pOsCaM3::GUS was detected in both the cotyledons and root. Also, pRCaM1::GUS was detected in all the tissues surrounding the root system, while the presence of pOsCaM3::GUS was observed in the root, except in the root meristem. However, in mature transgenic plants, the expression of pOsCaM1::GUS and OsRCaM3::GUS was scarcely detected. Under wounding stress, the GUS activity of pOsCaM1 and pOsCaM3 was strongly induced, and the activity of pOsCaM3 especially, was retained for long periods. In the phloem, pOsCaM3 activity induced by hormone treatments and abiotic stresses was also identified.

Keywords

References

  1. Reddy, A. S. (2001) Calcium: silver bullet in signaling. Plant Sci. 160, 381-404 https://doi.org/10.1016/S0168-9452(00)00386-1
  2. Sanders, D., Pelloux, J., Brownlee, C. and Harper, J. F.(2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl 1), S401-417 https://doi.org/10.1105/tpc.002899
  3. Snedden, W. and Fromm, H. (2001) Calmodulin as a versatile calcium signal transducer in plants. New Physiol. 151, 35-66 https://doi.org/10.1046/j.1469-8137.2001.00154.x
  4. Harmon, A. C., Gribskov, M. and Harper, J. F. (2000)CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci. 5, 154-159 https://doi.org/10.1016/S1360-1385(00)01577-6
  5. Cheng, S. H., Willmann, M. R., Chen, H. C. and Sheen, J. (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469-485 https://doi.org/10.1104/pp.005645
  6. Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S. and Wilhelm Gruissem, W. (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14, S389-400 https://doi.org/10.1105/tpc.001115
  7. Khan, M., Yang, S., Iwasaki, Y., Fujisawa, Y., Fukuda, H. and Komatsu, S. (2005) A gibberellin-regulated protein phosphorylated by a putative Ca^{2+}-dependent protein kinase is G-protein mediated in rice root. Plant Cell Environ. 28, 679-687 https://doi.org/10.1111/j.1365-3040.2005.01321.x
  8. Nakagawa, Y., Katagiri, T., Shinozaki, K., Qi, Z., Tatsumi,H., Furuichi, T., Kishigami, A., Sokabe, M., Kojima, I.,Sato, S., Kato, T., Tabata, S., Iida, K., Terashima, A.,Nakano, M., Ikeda, M., Yamanaka, T. and Iida, H. (2007)Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc. Natl. Acad. Sci. U.S.A. 104, 3639-3644 https://doi.org/10.1073/pnas.0607703104
  9. Heo, W. D., Lee, S. H., Kim, M. C., Kim, J. C., Chung, W.S., Chun, H. J., Lee, K. J., Park, C. Y., Park, H. C., Choi, Y.J. and Cho, M. J. (1999) Involvement of specific calmodulin isoforms in salicylic acid-dependent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. U.S.A. 96, 766-771 https://doi.org/10.1073/pnas.96.2.766
  10. Lee, S. H., Johnson, J. D., Walsh, M. P., van Lierop, J. E.,Sutherland, C., Xu, A., Snedden, W. A., Kosk-Kosicka, D.,Fromm, H., Narayanan, N. and Cho, M. J. (2000) Differential regulation of Ca^{2+}/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca^{2+}concentration. Biochem. J. 350, 299-306 https://doi.org/10.1042/0264-6021:3500299
  11. Xiao, C., Xin, H., Dong, A. W., Sun, C. R. and Cao, K. M.(1999) A novel calmodulin-like protein gene in rice which has an unusual prolonged C-terminal sequence carrying a putative prenylation site. DNA Res. 6, 179-181 https://doi.org/10.1093/dnares/6.3.179
  12. Yamakawa, H., Mitsuhara, I., Ito, N., Seo, S., Kamada, H.and Ohashi, Y. (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur. J. Biochem. 268, 3916-3929 https://doi.org/10.1046/j.1432-1327.2001.02301.x
  13. Sun, C., Palmqvist, S., Olsson, H., Boren, M., Ahlandsberg, S. and Jansson, C. (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15, 2076-2092 https://doi.org/10.1105/tpc.014597
  14. Zhang, Z. L., Xie, Z., Zou, X., Casaretto, J., Ho, T. H. and Shen, Q. J. (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134, 1500-1513 https://doi.org/10.1104/pp.103.034967
  15. Buchel, A. S., Brederode, F. T., Bol, J. F. and Linthorst, H. J. M. (1999) Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol. Biol. 40, 387-396 https://doi.org/10.1023/A:1006144505121
  16. Mena, M., Cejudo, F. J., Isabel-Lamoneda, I. and Carbonero, P. A. (2002) Role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in Barley Aleurone. Plant Physiol. 130, 111-119 https://doi.org/10.1104/pp.005561
  17. Huang, J., Teyton, L. and Harper, J. F. (1996) Activation of a Ca^{2+}-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochem. 35, 13222-13230 https://doi.org/10.1021/bi960498a
  18. Phean-o-pas, S., Limpaseni, T. and Buaboocha T. (2008)Structure and expression analysis of the OsCam1-1 calmodulin gene from Oryza sativa L. BMB Rep. 41, 771-777 https://doi.org/10.5483/BMBRep.2008.41.11.771
  19. Muntz, K., Belozersky, M. A., Dunaevsky, Y. E., Schlereth,A. and Tiedemann, J. (2001) Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J. Exp. Bot. 52, 1741-1752 https://doi.org/10.1093/jexbot/52.362.1741
  20. Katsutomo, S., Susumu, H., Hiroyuki, I., Shigemi, S., Hirokazu,M. and Yuko, O. (2002) A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant Cell Physiol. 43, 108-117 https://doi.org/10.1093/pcp/pcf013
  21. Lavine, A. R., Pennell, I., Alvarez, M. E., Palmer, R. and Lamb, C. (1996) Calcium mediated apoptosis in a plant hypersensitive disease resistance response. Current Biol. 6, 427-436 https://doi.org/10.1016/S0960-9822(02)00510-9
  22. Leon, J., Rojo, E. and Sánchez-Serrano, J. J. (2001) Wound signalling in plants. J. Exp. Bot. 52, 1-9 https://doi.org/10.1093/jexbot/52.354.1
  23. Leon, J., Rojo, E., Titarenko, E. and Sánchez-Serrano, J. J.(1998) Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca^{2+}/calmodulin in Arabidopsis thaliana. Mol. Gen. Genet. 258, 412-419 https://doi.org/10.1007/s004380050749
  24. Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F. and Tan, M.(2007) Calcium-calmodulin is required for abscisic acidinduced antioxidant defense and functions both upstream and downstream of $H_{2}O_{2}$ production in leaves of maize (Zea mays) plants. New Phytol. 173, 27-38 https://doi.org/10.1111/j.1469-8137.2006.01888.x
  25. Aurisano, N., Bertani, A. and Reggiani, R. (1995). Involvement of calcium and calmodulin in protein and amino acids metabolism in rice roots under anoxia. Plant Cell Physiol. 36, 1525-1529
  26. Gong, M., van der Luit, A. H., Knight, M. R. and Trewavas,A. J. (1998) Heat-shock induced changed in intracellular $Ca^{2+}$ level in tobacco seedlings in relation to thermotolerance. Plant Physiol. 116, 429-437 https://doi.org/10.1104/pp.116.1.429
  27. Wingender, E., Dietze, P., Karas, H. and Knüppel, R. (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic. Acids Res. 24, 238-241 https://doi.org/10.1093/nar/24.1.238
  28. Kerstin, Q., Kornelie, F., Holger, K., Edgar, W. and Thomas,W. (1995) Matind and Matinspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic. Acids Res. 23, 4878-4884 https://doi.org/10.1093/nar/23.23.4878
  29. Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y.,Van de Peer, Y., Rouze, P. and Rombauts, S. (2002) Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic. Acids Res. 30, 325-327 https://doi.org/10.1093/nar/30.1.325
  30. Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999)Plant cis-acting regulatory DNA-elements (PLACE). Nucleic.Acids Res. 27, 297-300 https://doi.org/10.1093/nar/27.1.297

Cited by

  1. The Calmodulin-Binding Transcription Factor SIGNAL RESPONSIVE1 is a Novel Regulator of Glucosinolate Metabolism and Herbivory Tolerance in Arabidopsis vol.53, pp.12, 2012, https://doi.org/10.1093/pcp/pcs143
  2. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3 vol.79, pp.1-2, 2012, https://doi.org/10.1007/s11103-012-9896-z
  3. Abiotic stress responses in plants: roles of calmodulin-regulated proteins vol.6, 2015, https://doi.org/10.3389/fpls.2015.00809