The Characteristics of Poly(acrylamide)-SiOx Nanoparticles Prepared by Graft-polymerizaton

그라프트 중합에 의해 만들어진 폴리아크릴아마이드-실리카 나노 입자의 특성

  • Min, Jun Ho (Division of Chemical Engineering, Pukyong National University) ;
  • Min, Seong Kee (Division of Chemical Engineering, Pukyong National University)
  • 민준호 (부경대학교 응용화학공학부) ;
  • 민성기 (부경대학교 응용화학공학부)
  • Received : 2009.09.02
  • Accepted : 2009.11.18
  • Published : 2010.02.10

Abstract

Methacryloxypropyltrimethoxysilane (MPTMS) was used for the surface modification of silica nanoparticles in the toluene dispersion system for 8 h (MPSN). Then, methacryloxypropyl-modified silica nanoparticles were successfully prepared by solutioun polymerization in the ethanol solution at $60^{\circ}C$ for 14 h with adding AIBN initiator. The modification of ultra-fine particles (SiOx-PAA nanospheres) was investigated via EA, XPS, FTIR, TGA, SEM and TEM. The mean diameter of the bare silica nanoparticles, MPSN and SiOx-PAA monodisperse nanoparticles was about 25, 30 and 35 nm, respectively.

${\gamma}-Methacryloxypropyl$이 가진 기능성 그룹으로 silica nanoparticle의 유기변형은 silica의 표면개질로 성공적으로 준비했다. 또한 ethanol 용매에서 AAm을 사용하는 radical 침전중합을 통해서 polyacrylamide를 MPSN nanosphere에 'raft from'방법으로 microsphere가 성공적으로 graft중합되었다. FTIR과 XPS는 ultra-fine silica particle의 표면에서 실리카개질이 공유결합하는 것을 보여주며 SEM분석은 ultra-fine particle과 유기변형된 입자는 각각 25, 30, 35 nm의 크기로 응집작용을 효과적으로 막아주고 나누어줌을 증명할 수 있다는 것을 보여준다.

Keywords

References

  1. P. A. Lovell and M. S. El-Aasser, In Emulsion polymerization and Emulsion polymer. Wiley, New York (1997)
  2. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, J. Colloid Interface Sci., 1, 513 (1946) https://doi.org/10.1016/0095-8522(46)90059-1
  3. J. Sagiv, J. Am. Chem. Soc., 102, 92 (1980) https://doi.org/10.1021/ja00521a016
  4. R. G. Nuzzo and D. L. Allora, J. Am. Chem. Soc., 105, 4481 (1983) https://doi.org/10.1021/ja00351a063
  5. A. Ulman, Chem. Rev., 96, 1533 (1996) https://doi.org/10.1021/cr9502357
  6. H. Ni and H. Kawaguchi, J. Polym. Sci. Part A: Polym. Chem., 42, 2823 (2004) https://doi.org/10.1002/pola.20088
  7. M. Ho, M. Cai, and J. E. Pemberton, Anal. Chem., 69, 2613 (1997) https://doi.org/10.1021/ac961118u
  8. C. Airoldi and A. O. C. Jr. Monteiro, J. Appl. Polym. Sci., 77, 797 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000725)77:4<797::AID-APP12>3.0.CO;2-Z
  9. K. G. Das, Controlled Release Technology, Bioengineering Aspects, Wiley, New York (1983)
  10. Y. Haga, S. Inoue, T. Sato, and R. Yosomiya, Angew. Makromol. Chem., 139, 49 (1986) https://doi.org/10.1002/apmc.1986.051390106
  11. G. Mayes and K. Mosbach, Trends Anal. Chem., 16, 321 (1997) https://doi.org/10.1016/S0165-9936(97)00037-X
  12. B. Sellergren, C. Dauwe, and T. Schneider, Macromolecules, 30, 2454 (1997) https://doi.org/10.1021/ma960745i
  13. M. Takenaga, Y. Serizawa, Y. Azechi, A. Ochiai, Y. Kosaka, R. Igarashi, and Y. Mizushima, J. Control. Release, 52, 81 (1998) https://doi.org/10.1016/S0168-3659(97)00193-4
  14. C. Gauthier, G. Thollet, G. Vigier, E. Bourgeat-Lami, and A. Guyot, Polym. Adv. Technol., 6, 345 (2003) https://doi.org/10.1002/pat.1995.220060513
  15. G. Laruelle, J. Parvole, J. Francois, and L. Billon, Polymer, 45, 5013 (2004) https://doi.org/10.1016/j.polymer.2004.05.030
  16. I. Sondi, T. H. Fedynyshyn, R. Sinta, and E. Matijevic, Langmuir, 16, 9031 (2000) https://doi.org/10.1021/la000618m
  17. Z. Z. Yang and D. Qiu, Macromol. Rapid Commun., 23, 479 (2002) https://doi.org/10.1002/1521-3927(20020501)23:8<479::AID-MARC479>3.0.CO;2-4
  18. S. W. Zhang, S. X. Zhou, Y. M. Weng, and L. M. Wu, Langmuir, 21, 2124 (2008) https://doi.org/10.1021/la047652b
  19. B. Erdem, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, Macromol. Sym., 155, 181 (2000) https://doi.org/10.1002/1521-3900(200004)155:1<181::AID-MASY181>3.0.CO;2-2
  20. D. G. Yu and J. H. An, Colloids Surfaces A: Physicochem. Eng. Aspects, 237, 87 (2004) https://doi.org/10.1016/j.colsurfa.2004.02.009
  21. D. G. Yu, J. H. An, J. Y. Bae, S. Kim, Y. E. Lee, S. D. Alm, S. Y. Kang, and K. S. Suh, Colloids Surfaces A: Physicochem. Eng. Aspects, 245, 29 (2004) https://doi.org/10.1016/j.colsurfa.2004.06.026
  22. S. D. Seul, S. R. Lee, and Y. H. Kim, J. Polym. Sci. Part A: Polym. Chem., 42, 4063 (2004) https://doi.org/10.1002/pola.20207
  23. Y. Yang, X. Z. Kong, C. Y. Kan, and C. G. Sun, Polym. Adv. Technol., 10, 54 (1999) https://doi.org/10.1002/(SICI)1099-1581(199901/02)10:1/2<54::AID-PAT766>3.0.CO;2-J
  24. L. Quaroni and G. Chunmanov, J. Am. Chem. Soc., 121, 10642 (1999) https://doi.org/10.1021/ja992088q
  25. J. H. Kim and T. R. Lee, Chem. Mater., 16, 3647 (2004) https://doi.org/10.1021/cm049764u
  26. E. C. C. Goh and H. D. H. Stover, Macromolecules, 35, 9983 (2002) https://doi.org/10.1021/ma0211028
  27. J. Gao and B. Frisken, Langmuir, 19, 5212 (2003) https://doi.org/10.1021/la0269762
  28. J. Gao and B. Frisken, Langmuir, 19, 5217 (2003) https://doi.org/10.1021/la034207s
  29. D.-J. Gan and L. A. Lyon, Macromolecules, 35, 9634 (2002) https://doi.org/10.1021/ma021186k
  30. C. D. Jones and L. A. Lyon, Macromolecules, 36, 1988 (2003) https://doi.org/10.1021/ma021079q
  31. J. S. Downey, R. S. Frank, W.-H. Li, and H. D. H. Stover, Macromolecules, 32, 2838 (1999) https://doi.org/10.1021/ma9812027
  32. W.-H. Li and H. D. H. Stover, J. Polym. Sci. Part A: Polym. Chem., 36, 1543 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
  33. Y. Naka, I. Kaetsu, Y. Yamamoto, and K. Hayashi, J. Polym. Sci. Part A: Polym. Chem., 29, 1197 (1991) https://doi.org/10.1002/pola.1991.080290814
  34. Y. Naka and Y. Yamamoto, J. Polym. Sci. Part A: Polym. Chem., 30, 2149 (1992) https://doi.org/10.1002/pola.1992.080301008
  35. R. H. Pelton and P. Chibante, Colloids Surf., 20, 247 (1986) https://doi.org/10.1016/0166-6622(86)80274-8
  36. H. Kawaguchi, M. Kawahara, N. Yaguchi, F. Hoshino, and Y. Ohtsuka, Polym. J., 20, 903 (1988) https://doi.org/10.1295/polymj.20.903
  37. H. Kawaguchi, Y. Yamada, S. Kataoka, Y. Morita, and Y. Ohtsuka, Polym. J., 23, 955 (1991) https://doi.org/10.1295/polymj.23.955
  38. Y. Kamijo, Preparation and Characterization of Hydrogel Microspheres. M. S. Thesis, Keio University, Yokohama, Japan (1995)
  39. C. M. Tseng, Y. Y. Lu, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci. Part A: Polym. Chem., 24, 2995 (1986) https://doi.org/10.1002/pola.1986.080241126
  40. A. Tuncel, R. Kahraman, and E. Piskin, J. Polym. Sci., 50, 303(1993)
  41. Y. Chen and H. Yang, J. Polym. Sci. Part A: Polym. Chem., 30, 2765 (1992) https://doi.org/10.1002/pola.1992.080301312
  42. S. Kobayashi, H. Uyama, J. Y. Choi, and Y. Matsumoto, Polym. Int., 30, 265 (1993) https://doi.org/10.1002/pi.4990300221
  43. H.-M. Ni, Y.-Z. Du, G.-H. Ma, M. Nagai, and S. Omi, Macromolecules, 34, 6577 (2001) https://doi.org/10.1021/ma010829d
  44. H.-M. Ni, G.-H. Ma, M. Nagai, and S. J. Omi, Appl. Polym. Sci., 82, 2679 (2001) https://doi.org/10.1002/app.2121
  45. H.-M. Ni, G.-H. Ma, M. Nagai, and S. J. Omi, Appl. Polym. Sci., 82, 2692 (2001) https://doi.org/10.1002/app.2122