DOI QR코드

DOI QR Code

Dissociative Photoionization of Dodecamethylcyclohexasilane in a Supersonic Molecular Beam: Elucidation of Excited States via a TD DFT Calculation

Boo, Bong-Hyun;Cho, Han-Joung;Lee, Jae-Kwang;Lim, Edward C.

  • Published : 20100100

Abstract

Resonant 2-photon ionization and fluorescence excitation spectroscopies of dodecamethylcyclohexasilane (DDMCHS) were investigated in the range from 262 to 290 nm in a supersonic molecular beam. We observed the parent ion, $Si_{6}Me_{12}^{+}$, and its various daughter ions,$Si_{6}Me_{11}^{+}$, $Si_{5}Me_{9}^{+}$, $Si_{4}Me_{9}^{+}$, $Si_{3}Me_{7}^{+}$, $Si_{3}Me_{6}^{+}$, $Si_{2}Me_{3}^{+}$, and $Si_{2}Me_{2}^{+}$, in the whole photon energy range. The occurrences of consecutive bond scissions and rearrangements with excess energy accumulated by additional photon absorption after the two-photon ionization of the DDMCHS molecule could explain the formation of various ionic products. The experimental vertical excitation energies are favorably compared with the values predicted by using the TD DFT calculation.

Keywords

References

  1. P. P. Gaspar, Reactive Intermediates, (Wiley, New York, 1978),Vol.1 p. 229
  2. P. P. Gaspar, Reactive Intermediates, (Wiley, New York, 1981),Vol.2 p. 335
  3. P. P. Gaspar, Reactive Intermediates, (Wiley, New York, 1978),Vol.3 p. 337-427
  4. P. P. Gaspar, D. Holten, S. Konieczny and J. Y. Corey, Acc. Chem Res. 20, 329 (1987) https://doi.org/10.1021/ar00141a003
  5. M. J. Michalczyk, M. J. Fink, D. J. DeYoung, C. W. Carlson, K. M. Welsh, R. West and J. Michl, Silicon, Germanium, Tin, Lead Comp. 9, 75 (1986)
  6. M. Ishikawa and M. Kumada, J. Chem. Soc. D: Chem. Commun. 10, 612 (1970)
  7. M. Ishikawa and M. Kumada, J. Organometal. Chem. 42, 325 (1972) https://doi.org/10.1016/S0022-328X(00)90081-0
  8. M. Ishikawa, K.-I. Nakagawa, M. Ishiguro, F. Ohi and M. Kumada, J. Organometal. Chem. 152, 155 (1978) https://doi.org/10.1016/S0022-328X(00)91918-1
  9. M. Ishikawa, K.-I. Nakagawa, R. Enokida and M. Kumada, J. Organometal. Chem. 201, 151 (1980) https://doi.org/10.1016/S0022-328X(00)92573-7
  10. P. P. Gaspar, B. H. Boo, S. Chari, A. K. Gosh, D. Holten, C. Kirmaier and S. Konieczny, Chem. Phys. Lett. 105, 153 (1984) https://doi.org/10.1016/0009-2614(84)85639-0
  11. T. Miyazawa, S.-Y. Koshihara, C. Liu, H. Sakurai and M. Kira, J. Am. Chem. Soc. 121, 3651 (1999) https://doi.org/10.1021/ja983370k
  12. M. Kira, T. Miyazawa, S.-Y. Koshihara, Y. Segawa and H. Sakurai, Chem. Lett. 1, 3 (1995)
  13. K. L. Bobbit and P. P. Gaspar, J. Organometal. Chem. 499, 17 (1995) https://doi.org/10.1016/0022-328X(95)00321-G
  14. Y. Huang, M. Sulkes and M. J. Fink, J. Organometal. Chem. 499, 1 (1995) https://doi.org/10.1016/0022-328X(95)00325-K
  15. I. Borthwick, L. C. Baldwin, M. Sulkes and M. J. Fink, Organometallics, 19, 139 (2000) https://doi.org/10.1021/om990880u
  16. B. H. Boo, D. E. Kang, H. K. Kang, M. Kwon, S. J. Yoo, J. K. Lee and E. C. Lim, Chem. Phys. Lett. 417, 83 (2006) https://doi.org/10.1016/j.cplett.2005.10.004
  17. W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  18. A. D. Becke, J. Chem. Phys. 98, 5648 (1993) https://doi.org/10.1063/1.464913
  19. A. D. Becke, Phys. Rev. A, 38, 3098 (1988) https://doi.org/10.1103/PhysRevA.38.3098
  20. C. Lee, W, Yang and R. G. Parr, Phys. Rev. B, 37, 785 (1988) https://doi.org/10.1103/PhysRevB.37.785
  21. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996) https://doi.org/10.1016/0009-2614(96)00440-X
  22. M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998) https://doi.org/10.1063/1.475855
  23. R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998) https://doi.org/10.1063/1.477483
  24. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989) https://doi.org/10.1063/1.456153
  25. R. A. Kendall, T. H. Dunning, Jr. and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992) https://doi.org/10.1063/1.462569
  26. A. K. Wilson, T. van Mourik and T. H. Dunning, Jr., J. Mol. Struct. (Theochem) 388, 339 (1996)
  27. E. R. Davidson, Chem. Phys. Lett. 260, 514 (1996) https://doi.org/10.1016/0009-2614(96)00917-7
  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision D. 01 (Gaussian, Inc., Wallingford, CT, 2004)
  29. G. Tekautz, A. Binter, K. Hassler and M. Flock, ChemPhysChem 7, 421 (2006) https://doi.org/10.1002/cphc.200500417
  30. H. Bock and W. Ensslin, Angew. Chem. Int. Ed. Engl. 10, 404 (1971) https://doi.org/10.1002/anie.197104041
  31. B. H. Boo, J. K. Lee and E. C. Lim, J. Mol. Struct. 892, 110 (2008) https://doi.org/10.1016/j.molstruc.2008.05.004

Cited by

  1. Fluorescence Spectroscopic and Time-Dependent Density-Functional Theory Studies of Diphenylsilane vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.993