전기이중층캐패시터에서 마이크로파에 의해 개질된 활성탄소전극의 전기화학적 특성

Electrochemical Characteristics of the Activated Carbon Electrode Modified with the Microwave Radiation in the Electric Double Layer Capacitor

  • 선진규 (한불화장품) ;
  • 엄의흠 (단국대학교 공학부 화학공학전공) ;
  • 이철태 (단국대학교 공학부 화학공학전공)
  • Sun, Jin-Kyu (R&D Center, Hanbul Cosmetics Co. Ltd.) ;
  • Um, Eui-Heum (Department of Chemical Engineering, Dankook University) ;
  • Lee, Chul-Tae (Department of Chemical Engineering, Dankook University)
  • 투고 : 2009.07.28
  • 심사 : 2009.10.05
  • 발행 : 2010.02.10

초록

유기용액계 전해질을 갖는 전기이중층캐패서터의 성능향상을 위해 마이크로파 처리를 통하여 활성탄소를 개질하고 이에 따른 전기화학적 특성의 변화를 조사하였다. 대상 시료로 petroleum cokes와 pitch cokes를 사용하여 NaOH 활성화에 의해 제조한 활성탄과 시판용 활성탄 BP-25를 사용하였다. 세 종류의 활성탄 모두 마이크로파 처리를 통해 산소를 포함하는 친수성관능기들이 표면으로부터 제거되었으며, 처리 시간이 증가함에 따라 비표면적과 세공부피는 감소하고, 평균세공직경은 증가하였다. 이러한 영향으로 표면 개질된 활성탄소로 제조한 전기이중층캐패시터는 계면저항이 개질하지 않은 활성탄소를 사용한 전기이중층 캐패서터에 비해 크게 감소하였으며, 비표면적의 감소에도 불구하고 방전용량은 개질하지 않은 경우보다 크게 증가하였다.

Modifying surface of activated carbon for the electrode of EDLC with an organic electrolyte was investigated to improve the electrochemical performance of EDLC by the microwave radiation. Three kinds of activated carbons, prepared activated carbon from petroleum cokes and pitch cokes and commercial activated carbon BP-25, were used for this study. For all investigated activated carbons, hydrophilic functional groups-containing oxygen disappeared from the surface of activated carbon as microwave radiation. And as microwave radiation time was increased, the specific surface area and total pore volume of activated carbons were reduced and average pore diameter were increased. From theses effects, interfacial resistance of EDLC with the modified activated carbon electrode was drastically decreased, and discharge capacitance was increased although the specific surface area of activated carbon was reduced by this microwave radiation.

키워드

참고문헌

  1. C. T. Lee, J. H. Kim, and B. W. Cho, Prospectives of Industrial Chemistry, 2, 16 (1999)
  2. T. Weng and H. Teng, Journal of Electrochemical Society, 148, 4 (2001)
  3. C. J. Farahmandi and E. Blank, Proceeding of The 4th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Education Seminar, Vol. 4 (1994)
  4. I. Tanahashi, A. Yoshida, and A. Wishino, Bull. Chem. Soc. Japan, 63, 2755 (1990) https://doi.org/10.1246/bcsj.63.2755
  5. A. Burke, Journal of Power Sources, 91, 37 (2000) https://doi.org/10.1016/S0378-7753(00)00485-7
  6. B. E. Conway, Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1994)
  7. J. A. Menendez, E. M. Menendez, M. J. Iglesias, A. Garcia, and J. J. Pis, Carbon, 37, 115 (1998)
  8. B. W. Ricketts and C. Ton-That, Journal of Power Sources, 89, 64 (2000) https://doi.org/10.1016/S0378-7753(00)00387-6
  9. B. Fang, Y. Z. Wei, and M. Kumagai, Journal of Power Sources, 155, 487 (2006) https://doi.org/10.1016/j.jpowsour.2005.04.012
  10. K. Leitner, A. Lerf, M. Winter, J. O. Besenhard, S. Villar-Rodil, F. Suarez-Garcia, A. Martinez-Alonso, and J. M. D. Tascon, Journal of Power Sources, 153, 419 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.078
  11. G. Gryglewicz, J. Machnilkowski, E. L. Grabowska, G. Lota, and E. Frackowiak, Electrochimica Acta, 50, 1197 (2004) https://doi.org/10.1016/j.electacta.2004.07.045