DOI QR코드

DOI QR Code

Effects of Oxidative Stress Induced by Diquat on Arginine Metabolism of Postweaning Pigs

  • Zheng, Ping (Institute of Animal Nutrition, Sichuan Agricultural University) ;
  • Yu, Bing (Institute of Animal Nutrition, Sichuan Agricultural University) ;
  • Lv, Mei (Institute of Animal Nutrition, Sichuan Agricultural University) ;
  • Chen, Daiwen (Institute of Animal Nutrition, Sichuan Agricultural University)
  • Received : 2009.05.05
  • Accepted : 2009.07.09
  • Published : 2010.01.01

Abstract

A total of 16 crossbred post-weaning pigs (10.64${\pm}$0.27 kg BW) were individually penned and assigned to one of two treatments to investigate the influences of diquat-induced oxidative stress on performance and arginine metabolism. Pigs in the oxidative stress group were injected intra-peritoneally with 10 mg/kg BW of diquat, while the control group were injected with isotonic saline. All pigs were fed ad libitum. The experiment lasted for 7 days. The results indicated that compared with control treatment, oxidative stress induced by diquat significantly decreased average daily gain, intake and feed conversion. The treatment decreased activities of antioxidant enzymes, increased concentration of malondialdehyde in plasma, increased cationic amino acid transporter-1 mRNA level and activity of ornithine aminotransferase and concentrations of arginine and citrulline in the jejunum, decreased the concentrations of arginine in plasma and kidney, and decreased induced nitric oxide synthase mRNA level. It is concluded that oxidative stress induced by diquat can influence absorption and metabolism of arginine and consequently modify the requirement of arginine for post-weaning pigs.

Keywords

References

  1. Aulak, K. S., R. Mishra, L. Zhou, S. L. Hyatt, W. Jonge, W. Lamers, M. Snider and M. Hatzoglou. 1999. Posttranscriptional regulation of the arginine transporter Cat-1 by amino acid availability. J. Biol. Chem. 274:30424-30432 https://doi.org/10.1074/jbc.274.43.30424
  2. Closs, E. I., A. Simon, N. Vekony and A. Rotmann. 2004. Plasma membrane transporters for arginine. J. Nutr. 134:2752s-2759s
  3. Crespo, E., M. Macias, D. Pozo, G. Escames, M. Martín, F. Vives, J. M. Guerrero and D. Acuna-Castroviejo. 1999. Melatonin inhibits expression of the inducible no synthase ii in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J. 13:1537-1546
  4. Dillon, E. L., D. A. Knabe and G. Wu. 1999. Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 276:1079-1086
  5. El-Gayar, S., H. Thuring-Nahler, J. Pfeilschifter, M. Rollinghoff and C. Bogdan. 2003. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171:4561-4568
  6. Fernandez, J., A. B. Lopez, C. Wang, R. Mishra, L. Zhou, I. Yaman, M. D. Snider and M. Hatzolgou. 2003. Transcriptional control of the arginine/lysine transporter, cat-1, by physiological stress. J. Biol. Chem. 278:50000-50009 https://doi.org/10.1074/jbc.M305903200
  7. Fu, Y., W. H. Cheng, J. M. Porres, D. A. Ross and X. G. Lei. 1999. Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radic. Biol. Med. 27:605-611 https://doi.org/10.1016/S0891-5849(99)00104-5
  8. Jang, H. Y., H. S. Kong, J. D. Oh, B. K. Park, B. K. Yang, G. J. Jeon and H. K. Lee. 2008. Maintenance of sperm characteristics and in vitro developmental rate of embryos against oxidative stress through antioxidants in pig. Asian-Aust. J. Anim. Sci. 21(3):340-345
  9. Inoue, Y., B. P. Bode and W. W. Souba. 1994. Hepatic Na$^{+}$-independent amino acid transport in endotoxemia rats: evidence for selective stimulation of arginine transport. Shock 2:164-170 https://doi.org/10.1097/00024382-199409000-00002
  10. Inoue, Y. and W. W. Souba. 1993. Cyclooxygenase blockage abrogates hepatic arginine uptake in endotoxemic rats. Surg. Forum 44:7-10
  11. Knight, S. A. B. and R. A. Sunde. 1987. The effect of progressive selenium deficiency on anti-glutathione peroxidase antibody reactive protein in rat liver. J. Nutr. 117:732-738
  12. Liang, H. Y., H. V. Remmen, V. Frohlich, J. Lechleiter, A. Richardson and Q. T. Ran. 2007. Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem. Biophys. Res. Commun. 356:893-898 https://doi.org/10.1016/j.bbrc.2007.03.045
  13. Loscalzo, J. 2004. L-Arginine and atherothrombosis. J. Nutr. 134(10):2798S-2800S
  14. Luiking, Y. C., M. M. Hallemeesch, Y. L. Vissers, W. H. Lamers and N. E. Deutz. 2004. In vivo whole body and organ arginine metabolism during endotoxemia (sepsis) is dependent on mouse strain and gender J. Nutr. 134:2768S-2774S
  15. Nappi, A. J. and E. Vass. 1998. Hydroxyl radical formation via iron-mediated fenton chemistry is inhibited by methylated catechols. Biochim. Biophys. Acta. 1425(1):159-167 https://doi.org/10.1016/S0304-4165(98)00062-2
  16. Pacitti, A. J., E. M. Copeland and W. W. Souba. 1992. Stimulation of hepatocyte System y (+)-mediated L-arginine transport by an inflammatory agent. Surgery 112:403-411
  17. Pan, M., H. A. Choudry, M. J. Epler, Q. H. Meng, A. Karinch, C. M. Lin and W. Souba. 2004 Arginine transport in catabolic disease states. J. Nutr. 134:2826S-2829S
  18. Pan, M., A. M. Karinch, C. M. Lin and W. W. Souba. 2001. Interferon-$\gamma$ stimulates arginine transport in intestinal epithelium. Surg. Forum 52:159-162
  19. Peled-Kamar, M., J. Lotem, I. Wirguin, L. Weiner, A. Hermalin and Y. Groner. 1997. Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wildtype Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. 94:3883-3887 https://doi.org/10.1073/pnas.94.8.3883
  20. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:2002-2007
  21. Rafferty, J. F., Y. Noguchi, J .E. Fischer and P. O. Hasselgren. 1994. Sepsis in rats stimulates cellular proliferation in the mucosa of the small intestine. Gastroenterology 107:121-127
  22. Spalding, D. J., J. R. Mitchell, H. Jaeschke and C. V. Smith. 1989. Diquat hepatotoxicity in the Fischer-344 rat: the role of covalent binding to tissue proteins and lipids. Toxicol. Appl. Pharmacol. 101(2):319-327 https://doi.org/10.1016/0041-008X(89)90280-9
  23. Wang, T., A. M. Lawler, G. Steel, I. Sipila, A. H. Milam and D. Valle. 1995. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat. Genet. 11(2):185-190 https://doi.org/10.1038/ng1095-185
  24. White, M. F. 1985. The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochem. Biophys. Acta. 822:355-374 https://doi.org/10.1016/0304-4157(85)90015-2
  25. Wu, G. and S. M. Morris Jr. 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336:1-17
  26. Wu, G., P. K. Davis, N. E. Flynn, D. A. Knabe and J. T. Davidson. 1997. Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J. Nutr. 127(12):2342-2349
  27. Wu, G. and C. J. Meininger. 2008. Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Meth. Enzymol. 440:177-189 https://doi.org/10.1016/S0076-6879(07)00810-5
  28. Wu, G. 1997. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 272:G1382-G1390
  29. Wu, G. 1998. Intestinal mucosal amino acid catabolism. J. Nutr. 128:1249-1252
  30. Wu, G., F. W. Bazer, J. B. Hu, G. A. Johnson and T. E. Spencer. 2005. Polyamine synthesis from proline in the developing porcine placenta. Biol. Report 72:842-850 https://doi.org/10.1095/biolreprod.104.036293
  31. Yang, Z. H. and X. F. Ming. 2006. Recent advances in understudy endothelial dysfunction in atherosclerosis. Clin. Med. Res. 4(1):53-65 https://doi.org/10.3121/cmr.4.1.53
  32. Yuan, S. B., D. W. Chen, K. Y. Zhang and B. Yu. 2007. Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian-Aust. J. Anim. Sci. 20(10):1600-1605

Cited by

  1. I5007 improves the anti-oxidative activity of weanling piglets challenged with diquat vol.114, pp.6, 2013, https://doi.org/10.1111/jam.12188
  2. Flavones Using Diquat-Challenged Piglet Models vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/8140962
  3. Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets vol.109, pp.12, 2010, https://doi.org/10.1017/s0007114512004321
  4. The effect of dietary tryptophan levels on oxidative stress of liver induced by diquat in weaned piglets vol.5, pp.None, 2010, https://doi.org/10.1186/2049-1891-5-49
  5. Arginine metabolism and its protective effects on intestinal health and functions in weaned piglets under oxidative stress induced by diquat vol.117, pp.11, 2010, https://doi.org/10.1017/s0007114517001519
  6. Diquat Determines a Deregulation of lncRNA and mRNA Expression in the Liver of Postweaned Piglets vol.2019, pp.None, 2010, https://doi.org/10.1155/2019/9148535
  7. The Role of Nrf2 Signaling Pathway in Eucommia ulmoides Flavones Regulating Oxidative Stress in the Intestine of Piglets vol.2019, pp.None, 2010, https://doi.org/10.1155/2019/9719618
  8. Dietary glucose oxidase and/or catalase supplementation alleviates intestinal oxidative stress induced by diquat in weaned piglets vol.92, pp.1, 2010, https://doi.org/10.1111/asj.13634
  9. Influences of Selenium-Enriched Yeast on Growth Performance, Immune Function, and Antioxidant Capacity in Weaned Pigs Exposure to Oxidative Stress vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/5533210
  10. Quercetin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes vol.13, pp.2, 2010, https://doi.org/10.3390/nu13020375