HQSAR Analyses on the Tyrosinase Inhibitory Activity of Phenyl-2,2'-methylenebis(cyclohexane-1,3-dione) Analogues

Phenyl-2,2'-methylenebis(cyclohexane-1,3-dione) 유도체의 Tyrosinase 저해활성에 관한 HQSAR 분석

  • Kim, Sang-Jin (Department of Cosmetic Science, Daejeon Health Sciences College) ;
  • Kim, Young-Ok (Chemolee Lab Corporation R&D Center) ;
  • Cho, Yoon-Ki (Sky Solution Inc. R&D Center) ;
  • Choi, Won-Seok (Department of Applied Biology and Chemistry, Chungnam National University) ;
  • Sung, Nack-Do (Department of Applied Biology and Chemistry, Chungnam National University)
  • 김상진 (대전보건대학 화장품과학과) ;
  • 김영옥 (케모리랩 연구소) ;
  • 조윤기 (스카이솔류션(주) 연구소) ;
  • 최원석 (충남대학교 응용생물화학과) ;
  • 성낙도 (충남대학교 응용생물화학과)
  • Received : 2010.08.22
  • Accepted : 2010.09.10
  • Published : 2010.09.30

Abstract

The structure-activity relationships (SARs) between a series of phenyl-2,2'-methylenebis(cyclohexane-1,3-dione) analogues (1-22) as substrate molecules and their inhibitory activity against tyrosinase were studied quantitatively using molecular hologram quantitative structure-activity relationships (HQSARs). Based on the results, new compounds with the increased tyrosinase inhibitory activity were designed. In addition, statistically favored E-2 model ($q_2$ = 0.564 & $r_2$ = 0.929) was derived. It is predicted that the activity of the most potent one (P1) of compounds newly designed by the optimized HQSAR E-2 model was $Pred.pI_{50}$ = 5.48 and the predicted inhibitory activity was about 13.4 fold higher than that of the kojic acid used as standard compound.

기질 화합물로써 일련의 phenyl-2,2'-methylenebis(cyclohexane-1,3-dione) 유도체(1-22)들의 치환기($R_1$$R_2$)가 변화함에 따른 tyrosinase 활성저해에 대한 분자 홀로그래피적인 정량적 구조-활성관계(HQSAR) 모델을 유도하였다. 그리고 tyrosinase 저해활성에 미치는 구조상 요소들의 분석결과에 근거하여 높은 tyrosinase 저해활성을 보이는 새로운 tyrosinase 저해활성 분자를 설계하였다. 또한, 통계적으로 양호한 E-2 모델(상관성; $r_2$ = 0.929 및 예측성; $q_2$ = 0.564)을 유도하였으며 설계된 화합물, P1 ($Pred.pI_{50}$ = 5.48)는 기준물질로 사용된 kojic acid에 비하여 약 13.4배 높은 저해활성을 나타낼 것으로 예측되었다.

Keywords

References

  1. S. J. Kim and M. H. Lee, 3D-QSAR analyses on the inhibition activity of 4-($R_1$)-benzyl alcohol and 4-($R_2$)-phenol analogues against tyrosinase, J. Soc. Cosmet. Scientists Korea, 35(4), 271 (2009).
  2. W. H. Tollesona, Human melanocyte biology, toxicology, and pathology, J. Environmental Science and Health, Part C, 23(2), 105 (2005). https://doi.org/10.1080/10590500500234970
  3. J. Ogunnariwo and J. M. T. Hamilton-miller, Brownand red-pigmented pseudomonas: differentiation between melanin and pyorubrin, J. Med. Microbiol., 8, 199 (1975). https://doi.org/10.1099/00222615-8-1-199
  4. J. H. Park and M. H. Lee, A study of skin color by melanin index according to site, gestational age, birth weight and season of birth in korean neonates, J. Korean Med. Sci., 20, 105 (2005). https://doi.org/10.3346/jkms.2005.20.1.105
  5. Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama, Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis, J. Biol. Chem., 281(13), 8981 (2006). https://doi.org/10.1074/jbc.M509785200
  6. M. Jimenez, S. Chazarra, J. Escribano, J. Cabanes, and F. G. Carmona, Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes, J. Agric. Food Chem., 49(8), 4060 (2001). https://doi.org/10.1021/jf010194h
  7. E. Neeley, G. Fritch, A. Fuller, J. Wolfe, J. Wright, and W. Flurkey, Variations in IC50 values with purity of mushroom tyrosinase, Int. J. Mol. Sci., 10, 3811 (2009). https://doi.org/10.3390/ijms10093811
  8. Y. Tokiwa, M. Kitagawa, and T. Raku, Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase, Biotechnology Letters, 29(3), 481 (2007). https://doi.org/10.1007/s10529-006-9267-4
  9. K. W. Lam, A. Syahida, Z. U. Haq, M. B. A. Rahman, and N. H. Lajis, Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors, Bioorg. Med. Chem. Lett., 20(12), 3755 (2010). https://doi.org/10.1016/j.bmcl.2010.04.067
  10. Y. H. Chung, S. C. Jang, S. J. Kim, and N. D. Sung, 2D-QSAR and HQSAR on the inhibition activity of protein tyrosine phosphatase 1B with oleanolic acid analogues, J. Biol. Chem., 50(2), 52 (2007).
  11. S. J. Kim, Y. H. Chung, S. G. Kim, and N. D. Sung, CoMSIA analysis on the inhibition activity of PTP-1B with 3$\beta$-Hydroxy-12-oleanen-28-oic acid analogues, J. Korean Soc. Appl. Biol. Chem., 51(3), 171 (2008).
  12. S. J. Kim, N. D. Sung, and H. S. Jung, Holographic quantitative structure-toxicity relationships on the skin sensitization of alkyl-3,4-dihydroxybenzoate and N-alkyl-3,4-dihydroxybenzamide derivatives, J. Soc. Cosmet. Scientist Korea, 31(1), 91 (2005).
  13. N. D. Sung, H. S. Jung, and S. J. Kim, Hydrolytic reactivity and holographic quantitative structureactivity relationship analyses on the melanogenesis inhibitory activities of alkyl-3,4-dihydro-xybenzoate and N-alkyl-3,4-dihydroxybenzamide derivatives, J. Soc. Cosmet. Scientist Korea, 30(4), 491 (2004).
  14. T. W. Heritage and D. R. Lowis, Molecular hologram QSAR. Ch. 4., In Rational Drug Design; Novel Methodology and Practical Applications (ed. Parrill, A. L. and M. R. Reddy), ACS Symposium Series 719, American Chemical Society, Washington, DC (1999).
  15. K. M. Khan, G. M. Maharvi, M. T. H. Khan, A. J. Shaikh, S. Perveen, S. Begum, and M. I. Choudhary, Tetraketones: a new class of tyrosinase inhibitors, Bioorg. Med. Chem., 14(2), 344 (2006). https://doi.org/10.1016/j.bmc.2005.08.029
  16. Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO. 63144-2913, U.S.A.
  17. M. G. Sung, S. M. Joo, A. R. Song, and N. D. Sung, QSAR on the inhibition acticity of flavopiridol analogues against breast cancer MCF-7, J. Korean Soc. Appl. Biol. Chem., 50(3), 147 (2007).
  18. L. Stahle and S. Wold, Multivariate data analysis and experimental design in biomedical research, Progr. Med. Chem., 25, 291 (1988). https://doi.org/10.1016/S0079-6468(08)70281-9
  19. S. C. Jang and N. D. Sung, Molecular holographic QSAR analysis on the bonding affinity constants between nicotin acetylcholine receptors and New 3-Benzylidenemyosmine analogues and molecular design, J. Korean Soc. Appl. Biol. Chem., 50(2), 127 (2007).
  20. N. D. Sung, Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodologies. I. The basic concepts and types of QSAR methodologies, The Korean Journal of Pesticide Science, 6(3), 166 (2002).
  21. N. D. Sung, Development of new agrochemicals by qnantitative structure-activity relationship (QSAR) methodology. II. The linear free energy relationship (LFER) and descriptors, The Korean Journal of Pesticide Science, 6(4), 231 (2002).
  22. C. K. Smith and H. Sam, Allergic contact dermatitis, chemical and metabolic mechanisms, Taylor and Francis, London and New York (2001).
  23. W. G. Landis and M. H. Yu, Introduction to environmental toxicology; impacts of chemicals upon ecological systems. Ch. 5, 110. Lewis Publishers. London (1995).
  24. M. J. Prival, Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals, Environ. Mol. Mutagen., 37, 55 (2001). https://doi.org/10.1002/1098-2280(2001)37:1<55::AID-EM1006>3.0.CO;2-5
  25. D. J. Livingstone, Structure property correlation in molecular design, In Structure-property Correlations in Drug Research (ed. Waterbeemd HVD), Ch. 4. 95, Academic Press, R. G. Landes Company, Austin USA. (1996).
  26. M. Akamatsu, Current state and perspectives of 3D-QSAR. Curr. Topics Med. Chem., 2(12), 1381 (2002). https://doi.org/10.2174/1568026023392887
  27. W. S. Choi, Master's thesis dissertation, Chungnam National Univ., Daejeon Korea (2010).