Effects of the Temperature and Light Intensity on the Growth and Microcystin Production of Three Species of Microcystis (M. aeruginosa, M. ichthyoblabe, M. viridis)

Microcystis 3종(M. aeruginosa, M. ichthyoblabe, M. viridis)의 성장과 microcystins 생성에 대한 온도 및 조도의 영향

  • Lee, Kyung-Lak (Department of Forensic Medicine, National Institute of Scientific Investigation) ;
  • Jheong, Weon-Hwa (Water Supply and Sewerage Research Division, National Institute of Environmental Research) ;
  • Kim, Jin-Hee (Non-vascular Plants Research Division, National Institute of Biological Resources) ;
  • Kim, Han-Soon (Department of Biology, Kyungpook National University)
  • 이경락 (국립과학수사연구소 법의학과) ;
  • 정원화 (국립환경과학원 상하수도연구과) ;
  • 김진희 (국립생물자원관 하등식물연구과) ;
  • 김한순 (경북대학교 생명과학부)
  • Received : 2010.07.30
  • Accepted : 2010.08.30
  • Published : 2010.09.30

Abstract

The growth and microcystins production characteristics of three species of Microcystis (M. aeruginosa, M. ichthyoblabe, M. viridis) isolated from Yeongchun dam and Ankei dam in Kyungpook Province, South Korea were investigated at temperatures of $15{\sim}35^{\circ}C$ and light intensities of $35{\sim}180\;{\mu}mol\;m^{-2}\;s^{-1}$. All of the three species exhibited the highest growth rates (${\mu}_{max}$) over the $30^{\circ}C$. The maximum growth rates of M. aeruginosa and M. ichthyoblabe was observed at $70\;{\mu}mol\;m^{-2}\;s^{-1}$, while M. viridis showed maximum growth rate at $35\;{\mu}mol\;m^{-2}\;s^{-1}$. The maximum production of total microcystins was observed at $20^{\circ}C$, and the production of microcystins decreased according as temperature increase. The highest microcystins production of M. aeruginosa, M. ichthyoblabe and M. viridis observed at light intensities of $120\;{\mu}mol\;m^{-2}\;s^{-1}$, $70\;{\mu}mol\;m^{-2}\;s^{-1}$ and $35\;{\mu}mol\;m^{-2}\;s^{-1}$, respectively. The concentration of microcyst in production and microcystin types of three species according to temperatures and light intensities showed clear difference between the species.

수화가 발생한 영천댐과 안계댐에서 분리한 Microcystis (M. aeruginosa, M. ichthyoblabe, M. viridis) 3종의 온도 및 조도에 대한 성장률과 microcystins 생성 특성을 알아보기 위해 배양실험을 실시하였다. 성장률은 3종 모두 $30^{\circ}C$ 이상에서 최고값을 나타내었으나 microcystins은 $20^{\circ}C$에서 최대로 생성되었으며, 온도가 증가할수록 microcystins 생성은 감소하였다. Microcystis aeruginosa와 M. ichthyoblabe은 $70\;{\mu}mol\;m^{-2}\;s^{-1}$의 광 조건에서 최대성장률을 나타낸 반면, M. viridis은 $35\;{\mu}mol\;m^{-2}\;s^{-1}$의 광 조건에서 최대성장률을 나타내었다. Microcystis aeruginosa, M. ichthyoblabe 및 M. viridis는 각각 $120\;{\mu}mol\;m^{-2}\;s^{-1}$, $70\;{\mu}mol\;m^{-2}\;s^{-1}$ 그리고 $35\;{\mu}mol\;m^{-2}\;s^{-1}$의 광 조건에서 최대의 microcystins를 생성하였다. 온도와 조도에 대한 이들 3종의 microcystins 생성정도와 microcystins 타입은 종간에 뚜렷한 차이를 나타내는 종 특이성을 보였다.

Keywords

References

  1. 이경락, 정원화, 김종민, 김영생, 최희진, 김한순. 2008. 영천호에서 남조류 독소(microcystins)의 계절적 변동. 한국하천호수학회지 41(2): 264-274.
  2. Bottcher, G., I. Chorus, S. Ewald, T. Hintze and N. Walz. 2001. Light-limited growth and microcystin content of Planktothrix agardhii and Microcystis aeruginosa in turbidostats. p. 115-133. In: Cyanotoxins-Occurrence, Causes, Consequences (Chorus, I. ed.). Springer, New York.
  3. Briand, J.F., C. Leboulanger, J.F. Humbert, C. Bernard and P. Dufour. 2004. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming. J. Phycol. 40: 231-238. https://doi.org/10.1111/j.1529-8817.2004.03118.x
  4. Codd, G.A. and G.K. Poon. 1988. Cyanobacterial toxins. p. 283-296. In: Biochemistry of the algae and cyanobacteria. Proceedings of the phytochemistry society of Europe, vol. 28 (Roger, L.J. and J.R Gallon, eds.). Oxford University Press, Oxford.
  5. Dai, R, H. Liu, J. Qu, J. Ru and Y. Hou. 2008. Cyanobacterial and their toxins in Guanting Reservoir of Beijing, China. J. Hazardous Materials 153: 470-477. https://doi.org/10.1016/j.jhazmat.2007.08.078
  6. EI Saadi, O. and A.S. Cameron. 1993. Illness associated with blue-green algae. Med. J. Aust. 158: 792-793.
  7. Falconer, I.R 2001. Toxic cyanobacterial bloom problems in Australian waters, risk and impacts on human health. Phycologia 40: 228-233. https://doi.org/10.2216/i0031-8884-40-3-228.1
  8. Kaebernick, M. and B.A. Neilan. 2001. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol. Ecol. 35: 1-9. https://doi.org/10.1111/j.1574-6941.2001.tb00782.x
  9. Kemp, A. and J. John. 2005. Microcystins associated with Microcystis dominated blooms in the Southwest wetlands, Western Australia.
  10. Komarek, J. 1991. A review of water-bloom forming Microcystis species, with regard to populations from Japan. Arch. Hydrobiol. Suppl. 92(Algological Studies 64): 115- 127.
  11. Komarek, J. and A. Anagnostidis. 1999. Cyanoprokaryota 1. Teil: Chroococcales. In: Susswasserflora von Mitteleuropa(EttI, H., G. Gartner, H. Heynig and D. Mollenhauer, eds.). Spektrum Akademischer Verlag, Heidelberg.
  12. Kuiper-Goodman, T., I. Falconer and J. Fitzgerald. 1999. Human health aspects. p. 112-153. In: Toxic cyanobacteria in water: A guide to their public health consequences, monitoring, and management (Chorus, I. and J. Bartram, eds.). E & FN Spon, London.
  13. Kurmayer, R., E. Dittmann, J. Fastner and I. Chorus. 2002. Diversity of microcystin genes within a populaton of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb. Ecol. 43: 107-118. https://doi.org/10.1007/s00248-001-0039-3
  14. Oh, H.M., S.J. Lee, M.H. Jang and B.D. Yoon. 2000. Microcystin production by Microcystis aeruginosa in a phosphorus- limited chemostat. Appl. Environ. Microbiol. 66: 176-179. https://doi.org/10.1128/AEM.66.1.176-179.2000
  15. Orr, P.T. and G.J. Jones. 1998. Relationship between microcystin production and cell division rates in nitrogenlimited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43: 1604-1614. https://doi.org/10.4319/lo.1998.43.7.1604
  16. Ozawa, K, H. Fujioka, M. Muranaka, A Yokoyama, Y. Katagami, T. Homma, K. Ishikawa, S. Tsujimura, M. Kumagai, M.F. Watanabe and H.D. Park. 2005. Spatial distribution and temporal variation of Microcystis species composition and microcystin concentration in Lake Biwa. Environ. Toxicol. 20: 270-276. https://doi.org/10.1002/tox.20117
  17. Park, H.D. and M.F. Watanabe. 1996. Toxic Microcystis in eutrophic lakes. p. 57-77. In: Toxic Microcystis (Watanabe, M.F., K.-I. Harada, W.W. Carmichael and H. Fujiki, eds.). CRC Press, Boca Raton.
  18. Park, H.D., C. Iwami, M.F. Watanabe, K.J. Harada, T. Okino and H. Hayashi. 1998. Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991-1994). Environ. Toxicol. Water Qual. 13: 61-72.
  19. Rapala, J., K Sivonen, C. Lyra and S.I. Niemela. 1997. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl. Environ. Microbiol. 63: 2206-2212.
  20. Ressom, R., F.S. Soong, J. Fitzgerald, L. Turczynowicz, O. EI Saadi, D. Roder, T. Maynard and I. Falconer 1993. Health effects of toxic cyanobacteria (blue-green algae), National Health and Medical Research Council, Australia.
  21. Rohrlack, T., M. Henning and J.G. Kohl. 2001. Isolation and characterization of colony-forming Microcystis aeruginosa strains. p. 152-158. In: Cyanotoxins-occurrence, causes, consequences (Chorus, I. ed.). Springer-Verlag. Berlin.
  22. Sabour, B., M. Loudiki, B. Oudra, V. Vasconcelos, R. Martins, S. Oubraim and B. Fawzi. 2002. Toxicology of a Microcystis ichthyoblabe waterbloom from Lake Oued Mellah (Morocco). Environ. Toxicol. 17: 24-31. https://doi.org/10.1002/tox.10028
  23. Saker, M.L. and D.J. Griffiths. 2000. The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in nothern Australia. Phycologia 39: 349-354. https://doi.org/10.2216/i0031-8884-39-4-349.1
  24. Shirai, M., A. Ohtake, T. Sano, R Matsumoto, T. Sakamoto, A. Sato, T. Aida, K.I. Harada, T. Shimada, M. Suzuki and M. Nakano. 1991. Toxicity and toxins of natural blooms and isolated strains of Microcystis sp. (cyanobacteria) and improved procedure for purification of cultures. Appl. Environ. Microbiol. 57: 1241-1245.
  25. Sivonen, K. 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth and hepatotoxin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 56: 2658-2666.
  26. Sivonen, K. and J. Jones. 1999. Cynobacterial toxins. p. 41- 111. In: Toxic cyanobacteria in water- a guide to their public health consequences, monitoring, and management (Chorus, I. and J. Bartram, eds.). E and FN Spon (on behalf of WHO), London.
  27. Song, L., T. Sano, R. Li, M.M. Watanabe, Y. Liu and K. Kaya. 1998. Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycol. Res. 46(Suppl.): 19-23.
  28. Utkilen, H. and N. Gjolme. 1992. Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological sighificance. Appl. Environ. Microbiol. 58: 1321-1325.
  29. Van der Westhuizen, AJ. and J.N. Eloff. 1985. Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta 163: 55-59. https://doi.org/10.1007/BF00395897
  30. Vezie, C., L. Brient, K. Sivonen, G. Bertru, J.C. Lefeuvre and M. Salkinoja-Salonen. 1998. Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microb. Ecol. 35: 126-135. https://doi.org/10.1007/s002489900067
  31. Via-Ordorika, L., J. Fastner, R. Kurmayer, M. Hisbergues, E. Dittmann, J. Komarek, M. Erhard and I. Chorus. 2004. Distribution of microcystin producing and nonmicrocystin- producing Microcystis sp. in European freshwater bodies: Detection of microcystins and microcystin genes in individual colonies. System. Appl. Microbiol. 27: 592-602. https://doi.org/10.1078/0723202041748163
  32. Watanabe, M.F. and S. Oishi. 1985. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl. Environm. Microbiol. 49: 1342-1344.
  33. Watanabe, M.F. 1996. Production of microcyst ins. p. 35-56. In: Toxic Microcystis (Watanabe, M.F., K-I. Harada, W.W. Carmichael and H. Fujiki, eds.). CRC Press, Boca Raton.
  34. Yepremian, C., M.F. Gugger, E. Briand, A. Catherine, C. Berger, C. Quiblier and C. Bernard 2007. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res. 41: 4446-4456. https://doi.org/10.1016/j.watres.2007.06.028
  35. Znachor, P., T. Jurczak, J. Komarkova, J. Jezberova, J. Mankiewicz, K. Kastovska and E. Zapomelova. 2006. Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environ. Toxicol. 21: 236-243. https://doi.org/10.1002/tox.20176