지르코니아 코팅 지지체를 이용한 수소분리막

Hydrogen Permselective Membrane using the Zirconia Coated Support

  • 최호상 (경일대학교 화학공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지학과)
  • Choi, Ho-Sang (Department Chemical Engineering, Kyungil University) ;
  • Ryu, Cheol-Hwi (Graduate School, Department Green Energy, Hoseo University) ;
  • Hwang, Gab-Jin (Graduate School, Department Green Energy, Hoseo University)
  • 투고 : 2010.08.25
  • 심사 : 2010.09.09
  • 발행 : 2010.09.30

초록

IS (요오드-황)프로세스의 HI 분해반응 공정에서의 적용을 목적으로 지르코니아 코팅 지지체를 이용하여 CVD법에 의해 수소분리막을 제작하였으며, 분리막으로서의 가능성을 평가하였다. 제작한 막의 형상 및 Si의 분포를 파악하기 위해 SEM 및 EPMA를 이용하여 분석하였다. 지르코니아를 코팅한 지지체를 이용하여 제작한 막에 Zr-Si-O층이 존재한다는 것을 알 수 있었다. 제작한 막의 수소와 질소가스의 단일 성분 투과속도를 $300{\sim}600^{\circ}C$에서 측정하였다. $600^{\circ}C$에서 Z-1막에서의 수소투과속도는 $1{\times}10^{-7}\;mol{\cdot}Pa^{-1}{\cdot}m^{-2}{\cdot}s^{-1}$를 나타냈다. 질소에 대한 수소의 선택성은 Z-1 막에서 5.0, Z-2막에서 5.75를 나타냈다.

The hydrogen permselective membrane were prepared by chemical vapor deposition (CVD) aiming at the applications to hydrogen iodide decomposition in the thermochemical IS process, and it was evaluated for the possibility as a separation membrane. An electron probe X-ray microanalyzer (EPMA) and SEM picture were used to analyze the morphology and structure of the prepared membranes. It was confirmed that Zr-Si-O layer exist in the surface of the prepared membrane using zirconia coated support. Single-component permeance to $H_2$ and $N_2$ were measured at $300{\sim}600^{\circ}C$. Hydrogen permeance through the Z-1 membrane at a permeation temperature of $600^{\circ}C$ was about $1{\times}10^{-7}\;mol{\cdot}Pa^{-1}{\cdot}m^{-2}{\cdot}s^{-1}$. The selectivities of $H_2/N_2$ at $600^{\circ}C$ were 5.0 and 5.75 for Z-1 and Z-2 membrane, respectively.

키워드

참고문헌

  1. J. Funk and M. Reinstrom, I&EC Process Design and Develop, 5, 336 (1966). https://doi.org/10.1021/i260019a025
  2. G.-J. Hwang, C.-S. Park, S.-H. Lee, T.-H. Kim, and H.-S. Choi, "Application of membrane technology in thermochemical hydrogen production IS (iodine-sulfur) process using the nuclear heat", Membrane Journal, 14(3), 185 (2004).
  3. J. H. Norman, G. E. Besenbruch, and D. R. O'Keefe, "Thermochemical water-splitting for hydrogen production", GRI-80/0105 (1981).
  4. K. Onuki, H. Nakajima, I. Ioka, M. Futakawa, and S. Shimizu, "IS process for thermochemical hydrogen production", JAERI-Review 94-006 (1994).
  5. http://www.jaea.go.jp/04/o-arai/nh/index.html.
  6. D. Neumann, "Phasengleichgewichte von HJ/$H_2O$/ J2-Loesungen", Diplomarbeit, RWTH Aachen (1987) (in German).
  7. K. Onuki, G.-J. Hwang, Arifal, and S. Shimizu, "Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature", J. Membr. Sci., 192, 193 (2001). https://doi.org/10.1016/S0376-7388(01)00500-2
  8. G.-J. Hwang, K. Onuki, M. Nomura, S. Kasahara, and J.-W. Kim, "Improvement of the thermochemical water-splitting IS(iodine-sulfur) process by electro-electrodialysis", J. Membr. Sci., 220, 129 (2003). https://doi.org/10.1016/S0376-7388(03)00224-2
  9. H.-S. Choi, S.-D. Hong, G.-J. Hwang, C.-S. Park, K.-K. Bae, and K. Onuki, "Dehydration through pervaporation form HIx solution (HI-$H_2O-I_2$ mixture) using a cation exchange membrane for thermochemical water-splitting iodine-sulfur process", Korean J. Chem. Eng., 23(2), 288 (2006). https://doi.org/10.1007/BF02705729
  10. G.-J. Hwang, K. Onuki, and S. Shimizu, "Separation of hydrogen from a $H_2-H_2O$-HI gaseous mixture using a silica membrane", AIChE J., 46, 92 (2000). https://doi.org/10.1002/aic.690460112
  11. G.-J. Hwang, C.-S. Park, S.-H. Lee, and H.-S. Choi, "Stability of a silica membrane in the HI-$H_2O$ gaseous mixture", Membrane Journal, 14(3), 201 (2004).
  12. G.-J. Hwang and K. Onuki, "Simulation study on the catalytic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process", J. Membr. Sci., 194, 207 (2001). https://doi.org/10.1016/S0376-7388(01)00540-3
  13. G.-J. Hwang, K. Onuki, S. Shimizu, and H. Ohya, "Hydrogen separation in $H_2-H_2O$-HI gaseous mixture using the silica membrane prepared by chemical vapor deposition", J. Membr. Sci., 162, 83 (1999). https://doi.org/10.1016/S0376-7388(99)00125-8
  14. G.-J. Hwang, J.-W. Kim, H.-S. Choi, and K. Onuki, "stability of a silica membrane prepared by CVD using $\gamma$- and $\alpha$-alimina tube as the support tube in HI-$H_2O$ gaseous mixture", J. Membr. Sci., 215, 293 (2003). https://doi.org/10.1016/S0376-7388(03)00022-X
  15. H. Ohashi, H. Ohya, M. Aihara, Y. Negishi, and S. I. Semenova, "Hydrogen production from hydrogen sulfide using membrane reactor integrated with porous membrane having thermal and corrosion resistance", J. Membr. Sci., 146, 39 (1998). https://doi.org/10.1016/S0376-7388(98)00089-1
  16. J.-H. Park and T.-B. Kang, "Separation of $H_2/N_2$ gas mixture by $SiO_2-B_2O_3$ membrane", Membrane Journal, 14(4), 312 (2004).
  17. T.-B. Kang, H.-K. Lee, and Y.-T. Lee, "Preparation of microporous silica membrane from TEOS-$H_2O$ system and separation of $H_2-N_2$ gas mixture", Membrane Journal, 10(2), 55 (2000).
  18. B. K. Sea, D.-W. Lee, and K.-H. Lee, "Synthesis of silica/alumina composite membrane using sol-gel and CVD method for hydrogen purification at high temperature", Membrane Journal, 11(3), 124 (2001).