DOI QR코드

DOI QR Code

등온 및 동적 흡착 실험을 통한 제강 슬래그의 비소 흡착 특성

Sorption Characteristics of Arsenic on Furnace Slag by Adsorption Isotherm and Kinetic Sorption Experiments

  • 오참뜻 (서울대학교 건설환경공학부) ;
  • 이성수 (서울대학교 공학연구소) ;
  • ;
  • 권호진 (광주대학교 토목공학과) ;
  • 이원택 (호남대학교 토목환경공학과) ;
  • 박준범 (서울대학교 건설환경공학부)
  • Oh, Cham-Teut (Dept. of Civil & Environ. Eng., Seoul National Univ.) ;
  • Rhee, Sung-Su (Seoul National University Engineering Research Institute, Seoul National University) ;
  • Igarashi, Toshifumi (Division of Sustainable Resources Engineering Faculty of Engineering, Hokkaido University) ;
  • Kon, Ho-Jin (Dept. of Civil Engineering, Gwangju Univ.) ;
  • Lee, Won-Taek (Dept. of Civil and Environ. Eng., Honam Univ.) ;
  • Park, Jun-Boum (Dept. of Civil & Environ. Eng., Seoul National Univ.)
  • 투고 : 2010.06.18
  • 심사 : 2010.09.01
  • 발행 : 2010.09.30

초록

본 연구에서는 지하수에 존재하는 비소를 산업 폐기물인 제강 슬래그를 이용하여 제거하고자, 제강 슬래그에 대한 비소의 흡착특성을 규명하였다. 이를 위해 등온흡착 실험과 동적흡착 실험을 수행하였고, 흡착반응 후 용액의 화학적 특성을 분석하였다. 실험 결과, 흡착 실험을 수행한 모든 용액은 염기 상태로 존재하였으며(pH 9이상), 칼슘의 농도가 가장 높았다(30~50mg/L). 등온흡착 실험결과는 Langmuir 모델보다Freundlich 모델에 적용하는 젓이 더 합리적이였으며, 제강 슬래그에 As(V)가 As(III)보다 약 87% 더 많이 흡착되는 것으로 확인됐다. 동적흡착 실험결과의 경우, 유사일차모델보다 유사이차모델을 통해 해석하는 것이 더 적합하였다. 비소의 초기농도가 높을수록 평형 흡착량($q_e$)과 완화시간($t_r$) 이 모두 증가하였으며, As(V)는 As(III)보다 평형 흡착량이 많고 완화시간은 짧은 것을 확인할 수 있었다. 또한, 유사이차모델을 통해 예측된 평형 흡착량이 등온흡착 실험에서 구한 평형 흡착량과 유사해 동적흡착 실험결과로 등온흡착 실험결과를 예측하는 것이 가능함을 확인하였다.

Sorption characteristics of arsenic on furnace slag were investigated to remove arsenic from groundwater using furnace slag, which is industrial waste generated from steel company. Adsorption isotherm experiments and kinetic sorption experiments were performed and the chemical characteristics of supernatants from these experiments were analyzed. Results showed that all supernatants were alkaline (above pH 9) and the highest ion concentration in the solution was found with calcium (30~50 mg/L). Results of adsorption isotherms were more adequately described by the Freundlich model than Langmuir model. From adsorption isotherms experiments, it was noted that the adsorption amount of As(V) was 87% higher than that of As(III). Results of kinetic sorption experiments were more properly fitted by pseudo second order (PSO) model than pseudo first order model. Equilibrium adsorption amount ($q_e$) and relaxation time ($t_r$) calculated from PSO model increased with initial concentration of arsenic. Equilibrium adsorption amount of As(V) was higher than that of As(III) and relaxation time of As(V) was shorter than that of As(III). Adsorption isotherm results could be predicted by kinetic adsorption results, since equilibrium adsorption amount calculated through PSO model generally agreed with equilibrium adsorption amount measured from adsorption isotherm.

키워드

참고문헌

  1. 구성은, 황경진, 김동수 (2000), "제강슬래그 처리 및 재활용의 최적화를 위한 분쇄 특성에 관한 연구", 대한환경공학회, 제22권, 제6호, pp.1139-1149.
  2. 김병권, 민상윤, 장윤영, 양재규 (2009), "산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구", 대한환경공학회지, 제31권, 제7호, pp.473-482.
  3. 송형명, 정숙경, 윤상훈, 이재철, 김연희, 김동수, 백계진, 문용운, 짐태영, 조성용 (2010), "폐타이어 활성탄을 이용한 중금속의 흡착특성", 한국폐기물자원순환학회, 제27권, 제2호, pp.111-121.
  4. 안성주, 전효택, 김경웅 (2001), "광산 폐기물에 의한 비소 및 중금속의 지표하부 유출과 격리저장 처리기법", 한국자원공학회지, 제38권, 제4호, pp.246-256.
  5. 이민희, 최정찬, 김진원 (2003), "고로폐광산 주변 농경지 토양 및 하천 최적토의 중금속 오염 분포 및 복원 대책 설계", 대한자원환경지질학회, 제36권, 제2호, pp.89-101.
  6. 이진수, 전효택 (2004),금속광산지역 독성 중금속원소들의 인체위해성 평가", 대한자원환경지질학회, 제37권, 제1호, pp.73-86.
  7. 이현용, 홍기찬, 임정은, 주진호, 양재의, 옥용식 (2009), "밤 부산물의 수용액 중 중금속 흡착 특성", 한국환경농학회, 제28권, 제1호, pp.69-74.
  8. 이희용,양중석, 최재영, 이승목 (2009), "철 및 망간 산화물로 코팅된 입자활성탄을 이용한 수용액 중 As(III) 및 As(V)의 제거", 재한환경공학회지, 제31권, 제8호, pp.619-626.
  9. 장윤영, 김광섭, 송기훈, 양재규 (2006), "철 및 망간코팅사 충전비를 달리한 여과시스템에서 3가 비소 제거의 최적 조건", 대한환경공학회지, 제28권, 제11호, pp.1186-1191.
  10. 정명채, 정문영, 최연왕 (2004), "국내 휴/폐광 금속광산 주변의 중금속 환경오염 평가", 자원환경지질, 제37권, 제1호, pp.21-33.
  11. 정재현, 양재규, 송기훈, 장윤영 (2006), "$MnO_2$-코팅 모래흡착제제조 및 As(3) 산화처리 적용", 대한환경공학회지, 제28권, 제1호, pp.54-60.
  12. 최성대, 이광헌, 박준범 (2007), "기술기사: 반응벽체의 수리지질학적 거동에 대한 수치해석 사례", 한국지반공학회지, 제23권, 제6호, pp.23-31.
  13. 한국철강협회 (2010), 철강슬레그 2009년 재활용실적 및 2010년 계획, 한국철강협회.
  14. 환경관리공단 (2005), 폐금속광산 토양오염실태 종합보고서 (158개 광산 종합), 환경부, 과천, 29 p.
  15. 환경부 (2007), 폐기물공정시험방법, 환경부, pp.29-30.
  16. 환경부 (2009), 환경백서, 환경부, 과천, 465 p.
  17. 환경부 (2010), 폐기물관리법 시행규칙, 환경부령, 제359호.
  18. Ahn, J., Chon, G, Moon, H., and Kim, K. (2003), "Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems", Water Research, Vol.37, No.10, pp.2478-2488. https://doi.org/10.1016/S0043-1354(02)00637-1
  19. Altundogan, H. S., Altundogan, S., Turnen, F., and Bildik, M. (2000), "Arsenic removal from aqueous solutions by adsorption on red mud", Waste Manage., Vol.20, No.8, pp.761-767. https://doi.org/10.1016/S0956-053X(00)00031-3
  20. Azizian, S. (2004), "Kinetic models of sorption: a theoretical analysis", Journal of colloid and inteiface science, Vol.276, No.1, pp.47-52. https://doi.org/10.1016/j.jcis.2004.03.048
  21. Bard, A. J., Parsons, R., and Jordan, J. (1985), Standard potentials in aqueous solutions, Marcel Dekker, New York, 162 p.
  22. Bothe, J. V., and Brown P. W. (1999), "Arsenic immobilization by calcium arsenate formation", Environ. Sci. Technol., Vol.33, No.21, pp.3806-3811. https://doi.org/10.1021/es980998m
  23. Dimitrova, S. V. (1999), "Metal sorption on blast-furnace slag", Water research, Vol.30, No.1, pp.228-232.
  24. Dimitrova, S. V. (2002), "Use of granular slag columns for lead removal", Water research, Vol.36, No.16, pp.4001-4008. https://doi.org/10.1016/S0043-1354(02)00120-3
  25. Dutre, V., and Vandeeasteele, C. (1995), "Solidification/stabilization of arsenic-containing waste: leach tests and behavior of arsenic in the leachate", Waste Manage., Vol.15, No.1, pp.55-62. https://doi.org/10.1016/0956-053X(95)00002-H
  26. Ferguson, J. F., and Gavis, J. (1972), "A review of the arsenic cycle in natural waters", Water Res., Vol.6, No.11, pp.1259-1274. https://doi.org/10.1016/0043-1354(72)90052-8
  27. Gavaskar, A. R. (1999), "Design and construction techniques for permeable reactive barriers", Journal of hazardous materials, Vol.68, No.1-2, pp.41-71. https://doi.org/10.1016/S0304-3894(99)00031-X
  28. Gupta, V. K., Gupta, M., and Sharma, S. (2001), "Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste", Water research, Vol.35, No.5, pp.1125-1134. https://doi.org/10.1016/S0043-1354(00)00389-4
  29. Ho, Y. S., and McKay, G. (1999), "Pseudo-second order model for sorption processes", Process Biochemistry, Vol.34, No.5, pp.451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  30. Jeon, D. Y., Lee, K. S., Shin, H. M., and Oh, K. J. (2006), "Adsorption characteristics of heavy metals for waste sludge and oyster shell", Journal of the environmental sciences, Vol.15, No.11, pp.1053-1059. https://doi.org/10.5322/JES.2006.15.11.1053
  31. Jung, M. C., Jung, M. Y., and Choi, Y. W. (2004), "Environmental assessment of heavy metals around abandoned metalliferous mine in Korea", Econ. Environ. Geol., Vol.37, No.1, pp.21-33.
  32. Lagergren, S. (1898), "Zur theorie der sogenannten adsorption geloster sloffe", Kungliga Svenska Vetenskapsakademiens Handlingar, Vol.24, No.4, pp.1-39.
  33. Lan, Y. Z., Zhang, S., Wang, J. K., and Smith, R. W. (2006), "Phosphorus removal using steel slag", Water research, Vol.34, No.1, pp.259-265.
  34. Lee, H. Y., Lim, J. E., Hong, K. C, Yang, J. E., and Ok. Y. S. (2008), "Biosorption technology for removal of heavy metals from wastewater: a literature review", TALS, Vol. 6, No.1, pp.15-24.
  35. MacRae, C. W. T., Blowes, D. W., and Ptacek, C. J. (1999), "In situ removal of arsenic from groundwater using permeable reactive barriers: a laboratory study", Proceedings of the Sudbury '99, Mining and the Environment II conference, Sudbury, Ontario. pp. 601-609.
  36. Oh, J. K. (1997), "Evaluation of contamination at closed mine and application methods of tailing wastes", Symposium on the remediation and application methods of environmental pollution around abandoned mine, ILE. Forum of Environmental Policy, Vol.97, No.1, pp.15-51.
  37. Roberts, L. C, Hug, S, J.. Ruettimann., T., Khan, A. W., and Rahman, M. T. (2004), "Arsenic removal with iron(lI) and iron(llI) in waters with high silicate and phosphate concentrations", Environ. Sci. technol., Vol.38, No.1, pp.307-315. https://doi.org/10.1021/es0343205
  38. Thiruvenkatacharia, R., Vigneswarana, S., and Naidub, R. (2008), "Permeable reactive barrier for groundwater remediation", Journal of Industrial and Engineering Chemistry, Vol.14, No.2, pp.145-156. https://doi.org/10.1016/j.jiec.2007.10.001
  39. Tournassat, C, Charlet, L., Bosbach, D., and Manceau, A. (2002), "Arsenic(III) oxidation by birnessite and precipitation of manganese (II) arsenate", Environ. Sci. Technol., Vol.36, No.3, pp.493-500. https://doi.org/10.1021/es0109500
  40. USEPA (2001), Arsenic and Clarifications to compliance and New Source Monitoring Rule: A Quick Reference Guide, In: http://www. epa.gov/safewater/arsenic/regulations.html, May 24, 2010 check.
  41. USEPA (2008), Green remediation: Incorporating sustainable environmental practices into remediation of contaminated site, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response, EPA 542-R-08-002.
  42. Weng, C H., and Huang, C P. (1994), 'Treatment of metal industrial waste water by fly ash and cement fixation", J. Environ Eng., Vol.120, No.6, pp.1470-1487. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1470)
  43. Yu, L. (2008), "New insights into pseudo-second-order kinetic equation for adsorption", Colloids and Surfaces A: Physicochem. Eng., Vol.320, No.1-3, pp.275-278. https://doi.org/10.1016/j.colsurfa.2008.01.032
  44. Yoshida, T., Yamauchi, H., and Fan, S. O. (2004), "Chronic health effects in people exposed to arsenic via the drinking water: doseresponse relationships in review", Toxicology and applied pharmacology, Vol.198, No.3, pp.243-252. https://doi.org/10.1016/j.taap.2003.10.022
  45. Zhang, F., and Itoh, H. (2005), "Iron oxide-loaded slag for arsenic removal from aqueous system", Chemosphere, Vol.60, No.3, pp. 319-325. https://doi.org/10.1016/j.chemosphere.2004.12.019