Insecticidal Activity of N'-phenvl-N-Methylformamidine Analogues against Two Spotted Spider Mite (Tetranychus urticae) and Design of New Potent Compounds

두 점박이 응애(Tetranychus urticae)에 대한 N'-phenyl-N-methylformamidine 유도체의 살충활성과 새로운 고활성 화합물들의 설계

  • Lee, Jae-Whang (Department of Applied Biology & Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Choi, Won-Seok (Department of Applied Biology & Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Dong-Guk (Moghu Research Center Ltd.) ;
  • Chung, Kun-Hoe (Moghu Research Center Ltd.) ;
  • Ko, Young-Kwan (Korea Research Institute of Chemical Technology) ;
  • Kim, Tae-Joon (Dongbu Advanced Research Institute) ;
  • Sung, Nack-Do (Department of Applied Biology & Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 이채황 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 최원석 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 이동국 (목우연구소(주)) ;
  • 정근회 (목우연구소(주)) ;
  • 고영관 (한국화학연구원 바이오소재연구센터) ;
  • 김태준 ((주)동부한농 동부기술원) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학과)
  • Received : 2010.08.13
  • Accepted : 2010.08.23
  • Published : 2010.09.30

Abstract

To predict and design of new potent insecticidal compounds, the two dimensional quantitative structure-activity relationships (2D-QSARs) and molecular hologram quantitative structure-activity relationships (HQSARs) between the various physicochemical parameters as descripters of N'-phenyl-N-methylformamidine analogues (1-22) and their insecticidal activity against the two spotted spider mite (Tetranychus urticae) were discussed quantitatively. From 2D-QSAR models (1 & 3), the width ($B_2$) of $R_3$-group as sterically factor and optimal total dipole moment (TDM=2.025D) of $R_4$-group were mainly influenced to increase the activity. Therefore, the activities were depend upon the $R_3$- and $R_4$-groups. Particularly, it is predicted that the activity of newly designed potent compound (PI; $EC_{50}$=0.516 ppm) by 2D-QSAR models (3) and HQSAR model F2 was about 34.3 fold higher than that of the commercialized insecticide, Amitraz ($EC_{50}$=17.7 ppm).

새로운 고활성의 살충성 화합물을 예측하고 설계하기 위하여 N'-phenyl-N-methylformamidine 유도체들의 두점박이 응애(Tetranychus urticae)에 대한 살충활성과 물리-화합적인 설명인자들 사이의 2차원적인 정량적 구조-활성관계(2D-QSAR)와 분자 홀로그래피적인 정량적 구조-활성관계(HQSAR)를 구체적으로 검토하였다. 2D-QSAR 모델(1 및 3)로부터 입체적인 요소로서 $R_3$-치환기의 폭($B_2$)과 $R_4$-치환기의 적정한 전체 쌍극자능율값(TDM=2.025 D)이 살충활성에 주로 영향을 미쳤으며 살충활성은 $R_3$- 및 $R_4$-치환기들에 의존적이었다. 특히, 2D-QSAR 모델(3)과 HQSAR 모델 F2에 의하여 설계된 새로운 유력한 활성화합물(P1; $EC_{50}$=0.516 ppm)의 살충활성은 Amitraz에 비하여 약 34.3배 높을 것으로 예측되었다.

Keywords

References

  1. Akamatsu, M. (2002) Current state and perspectivies of 3D-QSAR. Curr. Topics Med. Chem. 2:1381-1394. https://doi.org/10.2174/1568026023392887
  2. Aziz, A. S. and Knowles, C. O. (1973) Inhibition of monoamine oxidase by the pesticide Chlordimeform and related compounds. Nature, 242:417-418. https://doi.org/10.1038/242417a0
  3. Booth, T. F. (1989) Effects of biogenic amines and adrenergic drugs on oviposition in the cattle tickBoophilus: Evidence for octopaminergic innervation of the oviduct. Exp. & Appl. Acarology, 7:259-266. https://doi.org/10.1007/BF01197920
  4. Divito, C. B., Davis, S., Masoudi, S. and Muhoro, C. N. (2007) Relative stability of formamidine and carbamate groups in the bifunctional pesticide formetanate hydrochloride. J. Agric. Food Chem. 55:5377-5382. https://doi.org/10.1021/jf0637527
  5. Evan, P.D. and Gee, J. D. (1980) Action of formamidine pesticides on octopamine receptors. Nature. 287:60-62. https://doi.org/10.1038/287060a0
  6. Fujita, T. (1995) Quantitative structure-activity analysis and database-aided bioisosteric structural transformation procedure as methodologies of agrochemical design. (ed. Hansch, C and Fujita, T.), pp. 13-35, ACS Symposium Series, No. 606, ACS. Washington, DC.
  7. GraphPad software, Inc., 2236 Avenida de la Playa, La Jolla, CA 92037, U.S.A., http://www.graphpad.com/prism/
  8. Hafelinger, G. (1975) General and theoretical aspects of amidines and imidic acid derivatives. In The chemistry of amidine and imidates. (ed. Patai, S.) John Wiley & Sons, London. Ch. 1.
  9. Hanch, C. (1976) The structure of medicinal chemistry. J. Med. Chem., 19:1-6. https://doi.org/10.1021/jm00223a001
  10. Harrison, I. R., Kozlik, A., McCarthy, J. F., Palmer, B. H., Wakerley, S. B., Watkins, T. I. and Weighton, D. M. (1972) 1,5-Bis(2,4-dimethylphenyl)-3-methyl-1,3,5-triazapenta-1,4-diene, a new acaricide active against strains of mites resistant to organophosphorus and bridged diphenyl compounds. Pestic. Sci., 3:679-680. https://doi.org/10.1002/ps.2780030603
  11. Heritage, T. W. and D. R. Lowis (1999) Molecular hologram QSAR., In Rational drug design: Novel Methodology and practical Applications (ed. Parrill, A. L. and Reddy, M. R.), pp. 212-225., ACS Symposium Series, No. 719, ACS. Washington, DC.
  12. Holiingworth, R. M. (1976) Chemistry, biological activity, and uses of formamidine pesticides. Environ. Health. Perspect. 14:57-69. https://doi.org/10.1289/ehp.761457
  13. Hollingworth, R. M. and Murdock, L. L. (1979) Octopamine receptors, adenosine 3',5'-monophosphate, and neural control of firefly flashing. Science. 203:65-68. https://doi.org/10.1126/science.214856
  14. Jang, S. C. and Sung, N. D. (2007) Molecular holographic QSAR analysis on the bonding affinity constants between nicotin acetylcholine receptors and new 3-benzylidenemyosmine analogues and molecular design. J. Korean Soc. Appl. Biol. Chem. 50:127-131.
  15. Lee, D. K (2007) Synthesis of formamidine and 1,3,5-triazapental,4-diene derivatives and their biological activities. Thesis of Master's Degree, Korea University.
  16. Lund, A. E., Hollingworth, R. M. and Sharnkland, D. L. (1979) Chlordimeform: Plant protection by a sublethal, noncholinergic action on the central nervous system. Pest Biochem. physol. 11:117-128. https://doi.org/10.1016/0048-3575(79)90052-X
  17. Murdock, L. L. and Hollingworth, R. M. (1980) Octopamine-like actions of formamidines in the fIrefly light organ. Insect neurobiology and pesticide action, Soc. Chem. Ind., Lodon, pp. 415-422.
  18. SAS (2002) Statistic & Analysis Software on CD-ROM (Ver. 9.2), SAS Institute Inc., Cary, NC, 27513, USA.
  19. Soung, M. G., Kim, S. G. and Sung, N. D. (2007) 3D-QSAR analysis on the insecticidal activities of N-substituents on imidazol ring in Imidacloprid analogues. Korean J. Pesticide Sci., 11:131-137.
  20. Soung, M. G., Kil, M. J. and Sung, N. D. (2009) Structural characteristics that influence on the insecticidal activity of 2-(n-octyl)pseudothiourea analogues against the Diamondback moth (Plutella xylostella, L.). Bull. Korean Chem. Soc. 30:2749-2753. https://doi.org/10.5012/bkcs.2009.30.11.2749
  21. Stahle, L. and S. Wold (1988) Multivariate data analysis and experimental design in biomedical research, Progr. Med. Chem. 25:292-338.
  22. Sung, N. D., Kang, M. S., Jang, H. S. and Kim, D. W.(1996) Influence of 3-N-substituents (R) on the insecticidal activities of imidacloprid and its analogues. Agric. Chem. & Biotech. 39:140-146.
  23. Sung, N. D., Yu, S. J. and Kang, M. S. (1997) Kinetics and mechanism of hydrolysis insecticidal imidacloprid. Agric. Chem. & Biotech. 40:53-57.
  24. Sung, N. D. (2002) Development of new agrochemicals by quantitative structure activity relationship (QSAR) methodology; II. The linear free energy relationship (LFER) and descripters. Korean J. Pesticide Sci. 6:231-243.
  25. Sung, N. D. (2003) The range of physicochemical parameters for the active ingredients of fungicide and insecticide as corp protection agents. J. Korean Soc. Agri. Chem. Biotech. 46:280-284.
  26. Sung, N. D., Jang, S. C. and Choi, K. S. (2006) CoMFA and CoMSIA on the neuroblocking activity of 1-(6-chloro-3-pyridylmethyl)-2-nitroiminoimidazole analogures, Bull. Korean Chem. Soc. 27:1741-1746. https://doi.org/10.5012/bkcs.2006.27.11.1741
  27. Tripos, Sybyl (2010) Molecular Modeling and QSAR Software on CD-ROM (Ver. 8.1), Tripos Associates Inc., 1699 S. Hanley Rd. Suite 303, St. Louis, MO. 63144-2913, U.S.A.
  28. TSAR (2000) Proprietary Software (Ver. 3.3), Accelrys Inc., 10188 Telesis Court, Suite 100, San Diego, CA. 92121, U.S.A.