DOI QR코드

DOI QR Code

Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control

2상 타이타늄 합금의 미세조직 제어를 통한 초소성 특성 향상

  • 박찬희 (포항공과대학교 신소재공학과) ;
  • 이종수 (포항공과대학교 신소재공학과)
  • Published : 2010.02.01

Abstract

The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

Keywords

References

  1. M. T. Cope, D. R. Evetts, N. Ridley, 1986, Superplastic deformation characteristics of two microduplex titanium alloys, J. Mater. Sci., Vol. 21, pp. 4003-4008. https://doi.org/10.1007/BF02431642
  2. J. S. Kim, Y. W. Chang, C. S. Lee, 1998, Quantitative analysis on boundary sliding and its accommodation mode during superplastic deformation of two-phase Ti-6Al-4V alloy, Metall. Mater. Trans., Vol. 29A, pp. 217-226.
  3. N. S. Reddy, C. S. Lee, J. H. Kim, S. L. Semiatin, 2006, Determination of the beta-approach curve and beta-transus temperature for titanium alloys using sensitivity analysis of a trained neural network, Mater. Sci. Eng. A, Vol. A434, pp. 218-226.
  4. Y. G. Ko, C. S. Lee, D. H. Shin, S. L. Semiatin, 2006, Low-temperature superplasticity of ultrafine- grained Ti-6Al-4V processed by equal-channel angular pressing, Metall. Mater. Trans., Vol. 37A, pp. 381-391.
  5. C. H. Park, Y. G. Ko, J.-W. Park, C. S. Lee, 2008, Enhanced superplasticity utilizing dynamic globularization of Ti-6Al-4V alloy, Mater. Sci. Eng. A., Vol. A 496, pp. 150-158.
  6. M. Peters, G. Lutjering, G. Ziegler, 1983, Control of microstructures of (alpha plus beta)-titanium alloys, Z. Metall., Vol. 74, pp. 274-282.
  7. T. K. Ha, Y. W. Chang, 1998, An internal variable theory of structural superplasticity, Acta Mater., Vol. 46, pp. 2741-2749. https://doi.org/10.1016/S1359-6454(97)00473-4
  8. C. H. Park, B. Lee, C. S. Lee, 2009, Proc. 23rd Conf. on Adv. Struc. Mater. (eds. Y.-S. Kim, B.-S. Lee), Korean Inst. Metals & Mater., Daejeon, Korea, p. 8.
  9. I. M. Lifshitz, V. V. Slyozov, 1961, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, Vol. 19 pp. 35-50. https://doi.org/10.1016/0022-3697(61)90054-3
  10. G. A. Sargent, A. P. Zane, P. N. Fagin, A. K. Ghosh, S. L. Semiatin, 2008, Low-temperature coarsening and plastic flow behavior of an alpha/beta titanium billet material with an ultrafine microstructure, Metall. Mater. Trans., Vol. 39A, pp. 2949-2964.
  11. S. L. Semiatin, T. M. Lehner, J. D. Miller, R. D. Doherty, D. U. Furrer, 2007 Alpha/beta heat treatment of a titanium alloy with a nonuniform microstructure, Metall. Mater. Trans., Vol. 38A, pp. 910-921.
  12. S. L. Semiatin, T. M. Brown, T. A. Goff, P. N. Fagin, D. R. Barker, R. E. Turner, J. M. Murry, J. D. Miller, F. Zhang, 2004, Diffusion coefficients for modeling the heat treatment of Ti-6Al-4V, Metall. Mater. Trans., Vol. 35A, pp. 3015-3018.
  13. S. L. Semiatin, B. C. Kirby, G. A. Salishchev, 2004, Coarsening behavior of an alpha-beta titanium alloy, Metall. Mater. Trans., Vol. 35A, pp. 2809-2819.

Cited by

  1. Mechanisms and Kinetics of Static Spheroidization of Hot-Worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a Lamellar Microstructure vol.43, pp.3, 2012, https://doi.org/10.1007/s11661-011-1019-y