DOI QR코드

DOI QR Code

The Microtremor HVSRs in the SW Korean Peninsula I: Characteristics of the HVSR Peak Frequency and Amplification

한반도 남서부의 상시미동 HVSR 연구 I: 정점주파수와 증폭효과의 특성

  • Jung, Hee-Ok (Department of Ocean Construction, Kunsan National University) ;
  • Kim, Hyoung-Jun (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Jo, Bong-Gon (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Park, Nam-Ryul (Department of Ocean Construction, Kunsan National University)
  • 정희옥 (군산대학교 해양건설공학과) ;
  • 김형준 (전북대학교 지구환경과학과) ;
  • 조봉곤 (전북대학교 지구환경과학과) ;
  • 박남률 (군산대학교 해양건설공학과)
  • Received : 2010.08.30
  • Accepted : 2010.10.01
  • Published : 2010.10.31

Abstract

Fifteen min-microtremor data sets were collected at 136 sites from a coastal area of Kunsan and 117 sites from an inland area of Jeonju located in SW Korea, and were analyzed for the HVSR (Horizontal to Vertical Spectral Ratio) of the sites. The microtremor spectra of the coastal area have stronger energy in the lower frequency range from 1-6 Hz than those of the coastal area. This result can be attributed to the effect of the waves and tides in the Keum river and the Yellow sea. Twenty four hours of measurement of the microtremor indicated that the microtremor spectrum correlates with the human activities, but the microtremor HVSR peak was observed consistently at the characteristic frequency for the site. The HVSR peaks were grouped into 4 types -"single peak", "double peak", "broad peak" or "no peak"- based on their shapes. More than 90% of the data sets exhibit peak frequencies ($F_0$) which can be easily identified. The distribution of $F_0$ reveals a close relationship with the topography and local geology of the areas, exhibiting high F0s in the hillside areas and low $F_0s$ in the reclaimed land area. While the amplitudes of microtremor HVSR peak frequencies are less than 4 in the downstream of the inland area, those of the recently reclaimed land in the coastal area are extremely high (more than 10). The results of this study indicate that detailed HVSR studies are essential for the earthquake hazard reduction of reclaimed lands.

한반도 남서부 지역의 상시미동의 특성을 알아보기 위하여, 해안 지역(군산 136 지점)과 내륙 지역(전주 117 지점)에서 15분 씩 상시미동 자료를 획득하여 수평 대 수직 스펙트럼 비(HVSR, Horizontal to Vertical Spectral Ratio) 분석을 실시하였다. 상시미동의 에너지 스펙트럼은 내륙 지역에 비해 해안 지역에서 저주파 대역의 에너지가 크다. 이것은 서해의 파랑과 조류, 군산의 북쪽을 지나는 금강의 영향으로 보인다. 상시미동을 24시간 관측한 결과, 인간 활동과 연관된 상시미동 에너지는 변하나 상시미동 HVSR의 정점주파수($F_0$)는 변함이 없어, 하루 중 어느 시간에 관측해도 $F_0$의 안정된 값을 구할 수 있음을 시사한다. 관측점의 상시미동 피크를 싱글피크(single peak), 더블피크(double peak), 브로드피크(broad peak), 노피크(no peak)의 4 종류로 분류한 결과, 전체 관측점의 90 % 이상에서 정점주파수를 구할 수 있었다. 상시미동 $F_0$ 분포도는 기반암의 깊이가 얕은 구릉지에서 높은 주파수를, 하천 부근과 매립지에서 낮은 주파수를 보여 지형과 높은 상관관계를 보였다. 상시미동 $F_0$의 진폭($A_0$)은 전주지역에서는 하천의 하류에서 약 4 정도, 군산지역의 최근 매립지에서 대단히 높은 값(10 이상)을 나타낸다. 지진 발생시 매립지의 피해를 줄이기 위해서는 매립지의 부지반응에 대한 연구와 이에 따른 재해대책이 요구된다.

Keywords

References

  1. 김성균, 황민우, 2002, 상시미동에 의한 지하구조와 지반응답의 추정. 한국지구과학회, 23, 380-392.
  2. 김준경, 2006, 국내 지진관측소 부지의 지반증폭특성 연구, 터널과 지하공간. 한국 암반공학회지, 16, 486-494.
  3. 윤종구, 김동수, 방은석, 2006a, 국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 관한 연구 (I)-국내 내진 설계기준의 문제점. 한국지진공학회 논문집, 10, 39-50.
  4. 윤종구, 김동수, 방은석, 2006b, 국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 관한 연구 (II)-지반분류 개선법. 한국지진공학회 논문집, 10, 51-62.
  5. Andrews, D.J., 1986, Objective determination of source parameters and similarity of earthquakes of different size. In Das, S., Boatwright, J., and Scholz, C.H. (eds), Earthquake source mechanisms. American Geophysical Union, Wahsington D.C., USA, 259-268.
  6. Arai, H. and Tokimasu, K., 2004, S wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of Seismological Society of America, 94, 53-63. https://doi.org/10.1785/0120030028
  7. Bard, P.Y. and Chavez-Garcia, F.J., 1993, On the decoupling of surficial sediments from surrounding geology at Mexico City. Bulletin of the Seismological Society of America, 83, 1979-1991.
  8. Bonnefoy-Claudet, S., Kohler, A., Cornou, C., Wathelet, M., and Bard, P.Y., 2008, Effects of Love Waves on Microtremor H/V Ratio. Bulletin of the Seismological Society of America, 98, 288-300. https://doi.org/10.1785/0120070063
  9. Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek, J., and Far, D., 2006, H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167, 827-837. https://doi.org/10.1111/j.1365-246X.2006.03154.x
  10. Borcherdt, R.D., 1970, Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60, 29-61.
  11. Cara, F., Cultrera, G., Azzara, R.M., Ruveis, V.D., Giulio, G.D., Giammarinaro, M.S., Tosi, P., Vallone, P., and Rovelli, A., 2008, Microtremor measurments in the city of Palermo, Italy: Analysis of the correlation between local geology and damage. Bulletin of the SeismologiSeismological Society of America, 98, 1354-1372. https://doi.org/10.1785/0120060260
  12. Delgado, J., Lopez Casado, C., Estevez, A., Giner, J., Cuenca, A., and Molina, S., 2000, Mapping soft soils in the Segura river valley (SE Spain): A case sudy of microtremors as an exploration tool. Journal of Applied Geophysics, 45, 19-32. https://doi.org/10.1016/S0926-9851(00)00016-1
  13. Dravinski, M., Ding, G., and Wen, K.-L., 1996, Analysis of spectral ratios for estimating ground motion in deep basins. Bulletin of the Seismological Society of America, 86, 646-654.
  14. Fah, D., Kind, F., and Giardini, D., 2001, A theoretical investigation of average H/V ratios. Geophysical Journal International, 145, 535-549. https://doi.org/10.1046/j.0956-540x.2001.01406.x
  15. Field, E.H., Clement, A.C., Jacob, K.H., Aharonian, V., Hough, S.E., Friberg, P.A., Babaian, T.O., Karapetian, S.S., Hovanessian, S.M., and Abramian, H.A., 1995, Earthquake site response study in Giumri (formerly Leninakan), Armenia, using ambient noise observations. Bulletin of the Seismological Society of America, 85, 349-353.
  16. Finn, W.D.L., 1991, Geotechnical engineering aspects of microzonation. Proceedings of the Fourth International Conference on Seismic Zonation, 1, 25-29.
  17. Garcia-Jerez, A., Mavarro, M., Alcara, F.G., Luzon, F., Perez-Ruiz, J.A., Enomoto, T., Vidal, F., and Ocana, E., 2007, Shallow velocity structure using joint inversion of array and h/v spectral ratio of ambient noise: The case of Mula town (SE spain). Soil dynamics and Earthquake Engineering, 27, 907-919. https://doi.org/10.1016/j.soildyn.2007.03.001
  18. GEOPSY, 2010, http://www.geopsy.org/documentation/geopsy/hv.html (검색일: 2010. 8. 26)
  19. Gitterman, Y., Zaslavsky, Y., Shapira, A., and Shtivelman, V., 1996, Empirical site response evaluations: Case studies in Israel. Soil Dynamics and Earthquake Engineering, 15, 447-463. https://doi.org/10.1016/0267-7261(96)00019-X
  20. Haghshenas, E., 2005, Condition Geotechniques et alea sismique local a Teheran. PH.D. thesis, Univerite Joseph-Fourier-Grenoble I, 264 p.
  21. Haghshenas, E., Bard, P.-Y., and Theodulidis, N., 2008, Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering, 6, 75-108. https://doi.org/10.1007/s10518-007-9058-x
  22. Ibs-von Seht, M. and Wohlenberg, J., 1999, Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89, 250-259.
  23. Kanai, K. and Tanaka, T., 1954, Measurement of the microtremor I. Bulletin of the Earthquake Research Institute, 32, 199-209.
  24. Konno, K. and Ohmachi, T., 1998, Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88, 228-241.
  25. Lachet, C., Hatzfeld, D., Bard, P.Y., Theodulidis, N., Papaioannou, C., and Savvaidis, A., 1996, Site effects and microzonation in the city of Thessaloniki (Greece) comparison of different approaches. Bulletin of the Seismological Society of America, 86, 1692-1703.
  26. Lermo, J. and Chavez-Garcia, F.J., 1993, Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83, 1574-1594.
  27. Lermo, J. and Chavez-Garcia, F.J., 1994, Are microtremors useful in site response evaluation? Bulletin of the Seismological Society of America, 84, 1350-1364.
  28. Nakamura, Y., 1989, A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Quarterly Report of Railway Technical Research Institute, 30, 25-33.
  29. Nogoshi, M. and Igarashi, T., 1971, On the amplitude characteristics of microtremor (part 2). Journal of Seismological Society of Japan, 24, 26-40.
  30. Parolai, S, Picozzi, M., Richwalski, S.M., and Kilkereit, C., 2005, Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes, 2005. Geophysical Research Letters, 32, L01303, doi:10.1029/2004GL021115.
  31. Phillips, W.S. and Aki, K., 1986, Site amplification of coda waves from local earthquakes in central California. Bulletin of the Seismological Society of America, 76, 627-648.
  32. Piccozi, M., Strollo, A., Parolai, S., Durukal, E., Ozel, O., Karabulut, J.Z., and Erdik, M., 2009, Site characterization by seismic noise in Istanbul, Turkey. Soil Dynamics and Earthquake Engineering, 29, 469-482. https://doi.org/10.1016/j.soildyn.2008.05.007
  33. Satoh, T., Kawase, H., and Matsushima, S., 2001, Differences between site characteristics obtained from microtremor, S waves, P waves, and codas. Bulletin of the Seismological Society of America, 91, 313-334. https://doi.org/10.1785/0119990149
  34. Seekins, L.C., Wennerberg, L., Margheriti, L., and Liu, H.-P., 1996, Site amplification at five locations in San Francisco, California: A comparison of S waves, codas and microtremors. Bulletin of the Seismological Society of America, 86, 627-635.
  35. SESAME, 2004, Site effects assesment using ambient excitations project. Report of the WP04 H/V technique, Empirical evaluation, http://sesame-fp5.obs.ujf-grenoble.fr/Delivrables/D16-04.pdf (검색일: 2010. 8. 26)
  36. Singh, S.K., Mena, E., and Castro, R., 1988, Some aspects of source characteristics of the 19 September 1985 Michoacfin earthquake and ground motion amplification in and near Mexico City from strong motion data. Bulletin of the Seismological Society of America, 78, 451-477.
  37. Sun, C.-G., Kim, D.-S., and Chung C.-K., 2005, Geologic site conditions and site coefficients for estimating earthquake ground motions in the inland of Korea. Engineering Geology, 81, 446-469. https://doi.org/10.1016/j.enggeo.2005.08.002
  38. Uebayashi, H., Kawabe, H., and Takeuchi, Y., 2004, A high resolution modeling technique of irregular subsurface structures using H/V spectral ratio of long period microtremors. 13th World Conference on Earthquake Engineering, Paper No. 365.
  39. Walling, M.Y., Mohanty, W.K., Nath, S.K., Mitra, S., and John, A., 2009, Microtremor survey in Talhar, India to ascertain its basin characteristics in terms of predominant frequency by Nakamura's technique. Engineering Geology, 106, 123-132. https://doi.org/10.1016/j.enggeo.2009.03.013
  40. Yamanaka, H., Takemura, M., Ishida, H., and Niwa, M., 1994, Characteristics of long period microtremors and their applicability in exploration of deep sedimentary layers. Bulletin of the Seismological Society of America, 84, 1831-1841.

Cited by

  1. Seismic responses of the Yedang dam in Korea using H/V spectral ratios of microtremors vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.265