DOI QR코드

DOI QR Code

Economic Feasibility Study for Molten Carbonate Fuel Cells Fed with Biogas

  • Song, Shin-Ae (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Han, Jong-Hee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Sung-Pil (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Nam, Suk-Woo (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Oh, In-Hwan (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Choi, Dae-Ki (Fuel Cell Research Center, Korea Institute of Science and Technology)
  • 투고 : 2010.12.14
  • 심사 : 2010.12.23
  • 발행 : 2010.12.30

초록

Molten carbonate fuel cell (MCFC) power plants are one of most attractive electricity generation systems for the use of biogas to generate high-efficiency ultra-clean power. However, MCFCs are considerably more expensive than comparable conventional electricity generation systems. The commercialization of MCFCs has been delayed more than expected. After being effective in the Kyoto protocol and considerably increasing the fossil price, the attention focused on $CO_2$ regression and renewable energy sources has increased dramatically. In particular, the commercialization and application of MCFC systems fed with biogas have been revived because of the characteristics of $CO_2$ collection and fuel variety of MCFCs. Better economic results of MCFC systems fed with biogas are expected because biogas is a relatively inexpensive fuel compared to liquefied natural gas (LNG). However, the pretreatment cost is added when using anaerobic digester gas (ADG), one of the biogases, as a fuel of MCFC systems because it contains high $H_2S$ and other contaminants, which are harmful sources to the MCFC stack in ADG. Thus, an accurate economic analysis and comparison between MCFCs fed with biogas and LNG are very necessary before the installation of an MCFC system fed with biogas in a plant. In this paper, the economic analysis of an MCFC fed with ADG was carried out for various conditions of electricity and fuel price and compared with the case of an MCFC fed with LNG.

키워드

참고문헌

  1. A. Kirubakaran, S. Jain and R.K. Nema, Renewable and Sustainable Energy Reviews, 13, 2430-2440, (2009). https://doi.org/10.1016/j.rser.2009.04.004
  2. J. Brouwer, Current Applied Physics, 10, S9-S17, (2010). https://doi.org/10.1016/j.cap.2009.11.002
  3. Y. Lee, I. Kim, G. Chung, C. Lee, H. Lim, T. Lim, S. Nam and S. Hong, J. Power Source, 137, 9-16, (2004). https://doi.org/10.1016/j.jpowsour.2004.05.044
  4. S. Kim, S. Hyun, T. Lim and S. Hong, J. Power Source, 137, 24-29, (2004). https://doi.org/10.1016/j.jpowsour.2004.05.046
  5. R. Rashidi, I. Dincer and P. Berg, J. Power Sources, 185, 1107-1114, (2008). https://doi.org/10.1016/j.jpowsour.2008.07.061
  6. T. Watanabe, Y. Izaki, Y. Mugikura, H. Morita, M. Yoshikawa, M. Kawase, F. Yoshiba and K. Asano, J. Power Sources, 160, 868-871, (2006). https://doi.org/10.1016/j.jpowsour.2006.06.058
  7. M. Lusardi, B. Bosio and E. Arato, J. Power Sources, 131, 351-360, (2004). https://doi.org/10.1016/j.jpowsour.2003.11.091
  8. S. Campanari, P. Chiesa and G. Manzolini, International Journal of Green House Gas Control, (2009).
  9. M. Poschl, S. Ward and P. Owende, Applied Energy, (2010).
  10. L. Zhang, C. Xu and P. Champagne, Energy Conversion and Management, 51, 969-982, (2010). https://doi.org/10.1016/j.enconman.2009.11.038
  11. R. Bove and P. Lunghi, J. Power Source, 145, 588-593, (2005). https://doi.org/10.1016/j.jpowsour.2005.01.069
  12. R. Ciccoli, V. Cigolotti, R. Lo Presti, E. Massi, S.J. McPhail, G. Monteleone, A. Moreno, V. Naticchioni, C. Paoletti, E. Simonetti and F. Zaza, Waste Management, 30, 1018-1024, (2010). https://doi.org/10.1016/j.wasman.2010.02.022
  13. W. Urban, H. Lohmann and J.I. Salazar Gomez, J. Power Sources, 193, 359-366, (2009). https://doi.org/10.1016/j.jpowsour.2008.12.029
  14. I. Uchida, S. Ohuchi and T. Nishina, J. Electroanal. Chem., 369, 161-168, (1994). https://doi.org/10.1016/0022-0728(94)87094-2
  15. H. Devianto, S.P. Yoon, S.W. Nam, J. Han and T. Lim, J. Power Sources, 159, 1147-1152, (2006). https://doi.org/10.1016/j.jpowsour.2005.11.092
  16. M. Kawase, Y. Mugikura, T. Watanabe, Y. Hiraga and T. Ujihara, J. Power Sources, 104, 265-271, (2002). https://doi.org/10.1016/S0378-7753(01)00949-1
  17. R.J. Spiegel, S.A. Thorneloe, J.C. Trocciola and J.L. Preston, Waste Management, 19, 389-399, (1999). https://doi.org/10.1016/S0956-053X(99)00197-X
  18. K.V. Lobachyov and H.J. Richter, Energy Conversion and Management, 39, 1931-1943, (1998). https://doi.org/10.1016/S0196-8904(98)00077-6
  19. T. Kivisaari, P. Bjornbom and C. Sylwan, J. Power Sources, 104, 115-124, (2002). https://doi.org/10.1016/S0378-7753(01)00913-2
  20. G. Donolo, G. De simon and M. Femeglia, J. Power Sources, 158, 1282-1289, (2006). https://doi.org/10.1016/j.jpowsour.2005.10.045
  21. M. Krumbeck, T. Klinge and B. Doding, J. Power Sources, 157, 902-905, (2006). https://doi.org/10.1016/j.jpowsour.2006.02.052

피인용 문헌

  1. Enhancement of Mechanical Strength Using Nano Aluminum Reinforced Matrix for Molten Carbonate Fuel Cell vol.23, pp.2, 2012, https://doi.org/10.7316/KHNES.2012.23.2.143
  2. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases vol.9, pp.1, 2015, https://doi.org/10.1007/s11708-014-0341-7
  3. Reducing CO2emission from exhaust gases using molten carbonate fuel cells: a new approach vol.37, pp.4, 2016, https://doi.org/10.1080/01430750.2014.963206
  4. Improved molten carbonate fuel cell performance via reinforced thin anode vol.37, pp.21, 2012, https://doi.org/10.1016/j.ijhydene.2012.08.057
  5. Biogas upgrading and utilization from ICEs towards stationary molten carbonate fuel cell systems vol.13, pp.7, 2016, https://doi.org/10.1080/15435075.2015.1018992
  6. Fabrication of electrolyte-impregnated cathode by dry casting method for molten carbonate fuel cells vol.29, pp.7, 2012, https://doi.org/10.1007/s11814-011-0263-6
  7. Exergy & economic analysis of biogas fueled solid oxide fuel cell systems vol.272, 2014, https://doi.org/10.1016/j.jpowsour.2014.08.044