DOI QR코드

DOI QR Code

A Review on VOCs Control Technology Using Electron Beam

  • Son, Youn-Suk (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kim, Ki-Joon (Emission Source Research Division, National Institute of Environmental Research) ;
  • Kim, Jo-Chun (Department of Environmental Engineering, Konkuk University)
  • Received : 2010.03.24
  • Accepted : 2010.06.14
  • Published : 2010.09.30

Abstract

The removal characteristics for aromatic and aliphatic VOCs by electron beam (EB) were discussed in terms of several removal variables such as initial VOC concentration, absorbed dose, background gas, moisture content, reactor material and inlet temperature. It was reviewed that only reactor material was an independent variable among the potential control factors concerned. It was also suggested that main mechanism by EB should be radical reaction for the VOC removal rather than that by primary electrons. It was discussed that the removal efficiency of benzene was lower than that of hexane due to a closed benzene ring. In the case of aromatic VOCs, it was observed that the decomposition of the VOCs with more functional groups attached on the benzene ring was much easier than those with less ones. As for aliphatic VOCs, it was also implied that the longer carbon chain was, the higher the removal efficiency became. An EB-catalyst hybrid system was discussed as an alternative way to remove VOCs more effectively than EB-only system due to much less by-products. This hybrid included supporting materials such as cordierite, Y-zeolite, and $\gamma$-alumina.

Keywords

References

  1. Atkinson, R. (1985) Kinetics and mechanism of the gasphase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chemical Reviews 85, 172-181.
  2. Boulamanti, A.K., Korologos, C.A., Philippopoulos, C.J. (2008) The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase. Atmospheric Environment 42, 7844-7850. https://doi.org/10.1016/j.atmosenv.2008.07.016
  3. Chaichanawong, J., Tanthapanichakoon, W., Charinpanitkul, T., Eiad-ua, A., Sano, N., Tamon, H. (2005) Hightemperature simultaneous removal of acetaldehyde and ammonia gases using corona discharge. Science and Technology of Advanced Materials 6, 319-324. https://doi.org/10.1016/j.stam.2005.02.010
  4. Chmielewski, A.G. (2007) Industrial applications of electron beam flue gas treatment-from laboratory to the practice. Radiation Physics and Chemistry 76, 1480-1484. https://doi.org/10.1016/j.radphyschem.2007.02.056
  5. Chmielewski, A.G., Haji-Saeid, M. (2004) Radiation technologies: past, present and future. Radiation Physics and Chemistry 71, 16-20.
  6. Chmielewski, A.G., Ostapczuk, A., Zimek, Z., Licki, J., Kubica, K. (2002) Reduction of VOCs in flue gas from coal combustion by electron beam treatment. Radiation Physics and Chemistry 63(3-6), 653-655. https://doi.org/10.1016/S0969-806X(01)00655-7
  7. Chmielewski, A.G., Sun, Y., Bulka, S., Zimek, Z. (2007) Review on gaseous chlorinated organic pollutants electron beam treatment. Radiation Physics and Chemistry 76(11-12), 1795-1801. https://doi.org/10.1016/j.radphyschem.2007.02.102
  8. Doi, Y., Nakanishi, I., Konno, Y. (2000) Operational experience of a commercial scale plant of electron beam purification of flue gas. Radiation Physics and Chemistry 57(3-6), 495-499. https://doi.org/10.1016/S0969-806X(99)00496-X
  9. Faisal, I.K., Aloke, K.G. (2000) Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries 13, 527-545. https://doi.org/10.1016/S0950-4230(00)00007-3
  10. Frank, N.W. (1995) Introduction and historical review of electron beam processing for environmental pollution control. Radiation Physics and Chemistry 45, 989-1002. https://doi.org/10.1016/0969-806X(94)00156-E
  11. Futamura, S., Einage, H., Kabashima, H., Hwan, L.Y. (2004) Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catalysis Today 89(1-2), 89-95. https://doi.org/10.1016/j.cattod.2003.11.014
  12. Futamura, S., Gurusamy, A. (2005) Synergy of nonthermal plasma and catalysts in the decomposition of fluorinated hydrocarbons. Journal of Electrostatics 63(6-10), 949-954. https://doi.org/10.1016/j.elstat.2005.03.067
  13. Hakoda, T., Yang, M., Hirota, K., Hashimoto, S. (1998) Decomposition of volatile organic in air by electron beam and gamma ray irradiation. Journal of Advanced Oxidation Technologies 3(1), 79-86.
  14. Han, D.H., Stuchinskaya, T., Won, Y.S., Park, W.S., Lim, J.K. (2003) Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation. Radiation Physics and Chemistry 67, 51-60. https://doi.org/10.1016/S0969-806X(02)00405-X
  15. Hashimoto, S., Hakoda, T., Hirata, K., Arai, H. (2000) Low energy electron beam treatment of VOCs. Radiation Physics and Chemistry 57, 485-488. https://doi.org/10.1016/S0969-806X(99)00495-8
  16. Hirota, K., Hakoda, T., Arai, H., Hashimoto, S. (2002) Electron-beam decomposition of vaporized VOCs in air. Radiation Physics and Chemistry 65(4-5), 415-421. https://doi.org/10.1016/S0969-806X(02)00353-5
  17. Hirota, K., Hakoda, T., Taguchi, M., Takigami, M., Kim, H., Kojima, T. (2003) Application of electron beam for the reduction of PCDD/F emission from municipal solid waste incinerators. Environmental Science and Technology 37(14), 3164-3170. https://doi.org/10.1021/es021076t
  18. Hirota, K., Matzing, H., Paur, H.R., Woletz, K. (1995a) Analyses of products formed by electron beam treatment of VOC/air mixtures. Radiation Physics and Chemistry 45(4), 649-655. https://doi.org/10.1016/0969-806X(94)00068-U
  19. Hirota, K., Woletz, K., Paur, H.R., Mtzing, H. (1995b) Removal of butylacetate and xylene from air by electron beam a product study. Radiation Physics and Chemistry 46(4-6), 1093-1097. https://doi.org/10.1016/0969-806X(95)00329-V
  20. Jeon, E.C., Kim, K.J., Kim, K.H., Chung, S.G., Sunwoo, Y., Park, Y.K. (2008) Novel hybrid technology for VOC control using an electron beam and catalyst. Research on Chemical Intermediates 34(8-9), 863-870. https://doi.org/10.1007/BF03036948
  21. Khan, F.I., Ghoshal, A.K. (2000) Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries 13, 527-545. https://doi.org/10.1016/S0950-4230(00)00007-3
  22. Kim, J.C. (2002) Factors affecting aromatic VOC removal by electron beam treatment. Radiation Physics and Chemistry 65, 429-435. https://doi.org/10.1016/S0969-806X(02)00341-9
  23. Kim, J.C., Getoff, N., Jin, J. (2006a) Catalytic conversion of $CO_2-CH_4$ mixture into synthetic gas- Effect of electron-beam radiation. Radiation Physics and Chemistry 75, 243-246. https://doi.org/10.1016/j.radphyschem.2005.08.017
  24. Kim, J.C., Son, Y.S., Kim, K.J., Lim, Y.J., Chung, S.G., Sonwoo, Y. (2010) Combined radiolytic and catalytic oxidizing method to remove toluene in gas phase. Radiation Physics and Chemistry 79, 797-802. https://doi.org/10.1016/j.radphyschem.2010.01.016
  25. Kim, J., Han, B., Kim, Y., Lee, J.H., Park, C.R., Kim, J.C., Kim, J.C., Kim, K.J. (2004) Removal of VOCs by hybrid electron beam reactor with catalyst bed. Radiation Physics and Chemistry 71, 427-430.
  26. Kim, K.J., Kim, J.C., Sunwoo, Y. (2005) Development of hybrid technology using E-beam and catalyst for aromatic VOCs control. Radiation Physics and Chemistry 73(2), 85-90. https://doi.org/10.1016/j.radphyschem.2004.06.010
  27. Kim, K.J., Park, K.N., Kim, J.C., Sunwoo, Y., Son, Y.S., Kim, K.H. (2006b) A study of Hexane decomposition using electron beam irradiation under background gases. Journal of Korea Society for Atmospheric Environment 22(5), 724-730.
  28. Kohno, H., Berezin, A., Chang, J., Yamamoto, T., Shibuya, A., Honda, S. (1998) Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE Transactions on Industry Applications 34(5), 953-966. https://doi.org/10.1109/28.720435
  29. Licki, J., Chmielewski, A.G., Iller, E., Zimek, Z., Mazurek, J., Sobolewski, L. (2003) Electron-beam flue-gas treatment for multicomponent air-pollution control. Applied Energy 75(3-4), 145-154. https://doi.org/10.1016/S0306-2619(03)00027-8
  30. Lu, B., Zhang, X., Yu, X., Feng, T., Yao, S. (2006) Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials 137(1), 633-637. https://doi.org/10.1016/j.jhazmat.2006.02.012
  31. Machi, S. (1983) Radiation technology for environmental conservation. Radiation Physics and Chemistry 22(1-2), 91-97.
  32. Machi, S. (2004) Role of radiation processing for sustainable development. In Emerging Applications of Radiation Processing, IAEA-TECDOC-1386, Vienna, pp. 5-13.
  33. Magureanu, M., Mandache, N.B., Eloy, P., Gaigneaux, E.M., Parvulescu, V.I. (2005) Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental 61(1-2), 12-20. https://doi.org/10.1016/j.apcatb.2005.04.007
  34. Matzing, H., Hirota, K., Woletz, K., Paur, H.R. (1994) Product study of the electron beam induced degradation of volatile organic compounds (VOC). Journal of Aerosol Science 25(1), S325-S326. https://doi.org/10.1016/0021-8502(94)90392-1
  35. Moon, S.L. (2003) A study on plasma/catalytic synergy effect for VOCs removal. Korean Journal of Ksee 25(7), 810-815.
  36. Ogata, A., Yamanouchi, K., Mizuno, K., Kushiyama, S., Yamamoto, T. (1999) Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors. IEEE Transactions on Industry Applications 35(6), 1289-1295. https://doi.org/10.1109/28.806041
  37. Ostapczuk, A., Chmielewski, A.G., Honkonen, V., Ruuskanen, J., Tarhanen, J., Svarfvar, B. (1999) Preliminary test in decomposition of styrene by electron beam treatment. Radiation Physics and Chemistry 56(3), 369-371. https://doi.org/10.1016/S0969-806X(99)00182-6
  38. Paur, H.-R., Baumann, W., Mätzing, H., Jay, K. (1998) Electron beam induced decomposition of chlorinated aromatic compounds in waste incinerator offgas. Radiation Physics and Chemistry 52(1-6), 355-359. https://doi.org/10.1016/S0969-806X(98)00033-4
  39. Paur, H.R., Mätzing, H. (1993) Electron beam induced purification of dilute off gases from industrial processes and automobile tunnels. Radiation Physics and Chemistry 42(4-6), 719-722. https://doi.org/10.1016/0969-806X(93)90359-3
  40. Paur, H.-R., Mätzing, H., Woletz, K. (1991) Removal of volatile organic compounds from industrial off gas by irradiation induced aerosol formation. Journal of Aerosol Science 22(1), S509-S512. https://doi.org/10.1016/S0021-8502(05)80150-8
  41. Penetrante, B.M., Hsiao, M.C., Bardsley, J.N., Merritt, B.T., Vogtlin, G.E., Wallman, P.H., Kuthi, A., Burkhart, C.P., Bayless, J.R. (1995) Electron beam and pulsed corona processing of carbon tetrachloride in atmospheric pressure gas streams. Physics Letters A 209(1-2), 69-77. https://doi.org/10.1016/0375-9601(95)00789-4
  42. Penetrante, B.M., Hsiao, M.C., Bardsley, J.N., Merritt, B.T., Vogtlin, G.E., Kuthi, A., Burkhart, C.P., Bayless, J.R. (1997) Decomposition of methylene chloride by electron beam and pulsed corona processing. Physics Letters A 235(1), 76-82. https://doi.org/10.1016/S0375-9601(97)00611-7
  43. Penetrante, B.M., Hsiao, M.C., Bardsley, J.N., Merritt, B.T., Vogtlin, A., Kuthi, G.E., Burkhart, C.P., Bayless, J.R. (1998) Primary decomposition mechanism in electronbeam and electrical discharge procession of volatile organic compounds: Environmental Applications of Ionizing Radiation. Willey, New York, pp. 205-323.
  44. Person, J.C., Ham, D.O. (1988) Removal of $SO_2$ and $NO_x$ from stack gases by electron beam irradiation. Radiation Physics and Chemistry 31, 1-8.
  45. Rafson, H.J. (1998) Odor and VOC control handbook, McGraw-Hill.
  46. Shepson, P.B., Sedney, E.O., Corse, E.W. (1984) Ring fragmentation reactions on the photooxidations of toluene and o-xylene. Journal of Physical Chemistry 88, 4122-4126. https://doi.org/10.1021/j150662a053
  47. Sun, Y., Chmielewski, A.G., Bulka, S., Zimek, Z. (2006) Influence of base gas mixture on decomposition of 1,4-dichlorobenzene in an electron beam generated plasma reactor. Plasma Chemistry and Plasma Processing 26, 347-359. https://doi.org/10.1007/s11090-006-9029-z
  48. Sun, Y., Chmielewski, A.G., Bulka, S., Zimek, Z. (2008) Organic pollutants treatment in gas phase by using electron beam generated non-thermal plasma reactor. Chemicke Listy 102, s1524-s1528.
  49. Sun, Y., Chemielewski, A.G., Bulka, S., Zimek, Z. (2009) Decomposition of toluene in air mixtures under electron beam irradiation. Nukleonika 54(2), 65-70.
  50. Tanthapanichakoon, W., Charinpanitkul, T., Chaiyo, S., Dhattavorn, N., Chaichanawong, J., Sano, N., Tamon, H. (2004) Effect of oxygen and water vapor on the removal of styrene and ammonia from nitrogen by non-pulse corona-discharge at elevated temperatures. Chemical Engineering Journal 97, 213-223. https://doi.org/10.1016/S1385-8947(03)00212-2
  51. Vazquez, P.G., Lopez, V.H., Carrasco, A.H., Mijangos, R.R., Garcia, G.R. (2002) Calculation of absorbed dose of low-energy electron beam by an approximate method. Radiation Physics and Chemistry 64(3), 181-187. https://doi.org/10.1016/S0969-806X(01)00459-5
  52. Won, Y.-S., Han, D.-H., Stuchinskaya, T., Park, W.-S., Lee, H.-S. (2002) Electron beam treatment of chloroethylenes/air mixture in a flow reactor. Radiation Physics and Chemistry 63(2), 165-175. https://doi.org/10.1016/S0969-806X(01)00237-7
  53. Wu, C., Hakoda, T., Hirota, K., Hashimoto, S. (1997) Effect of ionizing radiation on decomposition of xylene and benzene contanined in air. Journal Aerosol Research Japan 12(2), 115-123.

Cited by

  1. Decomposition of Acetaldehyde Using an Electron Beam vol.34, pp.5, 2014, https://doi.org/10.1007/s11090-014-9540-6
  2. Selection of Sustainable Technology for VOC Abatement in an Industry: An Integrated AHP–QFD Approach vol.99, pp.3, 2018, https://doi.org/10.1007/s40030-018-0294-7
  3. A Study on Additives for Improvement of SO2 Removal Process using an Electron Beam vol.34, pp.6, 2018, https://doi.org/10.5572/KOSAE.2018.34.6.772
  4. Ammonia Decomposition Using Electron Beam vol.33, pp.3, 2010, https://doi.org/10.1007/s11090-013-9444-x
  5. Decomposition of Trimethylamine by an Electron Beam vol.33, pp.6, 2010, https://doi.org/10.1007/s11090-013-9479-z
  6. Monolithic LaBO 3 (B=Mn, Co or Ni)/Co 3 O 4 /cordierite Catalysts for o ‐Xylene Combustion vol.4, pp.19, 2019, https://doi.org/10.1002/slct.201901034
  7. A Review on Decomposition Mechanism of Odorous Compounds Using Electron Beam Irradiation vol.36, pp.1, 2010, https://doi.org/10.5572/kosae.2020.36.1.001
  8. Decomposition of n-hexane using a dielectric barrier discharge plasma vol.42, pp.13, 2010, https://doi.org/10.1080/09593330.2019.1690586