DOI QR코드

DOI QR Code

유동장 계측을 위한 디지털 입자 홀로그래피 시스템

Digital Particle Holographic System for Flow-Field Measurements

  • ;
  • 강보선 (전남대학교 기계시스템공학부)
  • Yan, Yang (Key Lab. of Automobile Parts and Test Technique, Chongqing Univ. of Tech.) ;
  • Kang, Bo-Seon (Dep. of Mechanical Engineering, Chonnam Nat'l Univ.)
  • 발행 : 2010.03.01

초록

본 연구에서는 입자의 크기 및 3차원 속도를 측정할 수 있는 디지털 업자 홀로그래피 시스템을 개발하고, 개발된 시스템의 효용성을 검증하기 위하여 층류 채널 유동장에 적용하여 보았다. 디지털 홀로그램을 기록할 수 있는 이중 펄스 홀로그래피 시스템을 구축하였고, 상관계수법을 이용한 초점면 결정, Wiener 필터를 사용한 잡음 제거, 두 개의 이진화값 및 분할 이진화방법 등을 사용하여 기록된 홀로그램 및 재생이미지를 처리하였으며, 동일 입자의 추적은 입자가 액적처럼 큰 경우는 일치확률법을, 유동장의 추적 입자처럼 작은 경우는 상호상관법을 사용하였다. 개발된 시스템을 사용하여 층류 채널 유동의 축방향 속도를 측정하였으며, 이론적 예측식과 비교하여, 디지털 입자 홀로그래피 시스템의 유용성을 확인하였다.

In this study, a digital particle holographic system and its application to channel-flow measurements were investigated. A double-exposure hologram recording system that is capable of recording digital holograms in a short time interval was developed. A correlation coefficient method was used to determine the focal plane of particles. The Wiener filter was used to remove noises and improve image quality. Two-threshold and image segmentation methods were used for binary image transformation. The cross-correlation method was used for particle pairing. The developed system was employed to study channel flow fields, and the axial velocities of channel flow were measured. The measurement errors are acceptable, and this proves the feasibility of using the digital particle holographic system as a good tool for flow-field measurements.

키워드

참고문헌

  1. Schnars, U. and Jueptner, W., 2002, "Digital Recording and Numerical Reconstruction of Holograms," Meas. Sci. Tech., Vol. 13, pp. 85-101. https://doi.org/10.1088/0957-0233/13/9/201
  2. Vikram, C. S., 1992, "Particle Field Holography," Cambridge University Press, pp. 6-16.
  3. Hinsch, K. D., 2002, “Holographic Particle Image Velocimetry,” Meas. Sci. Tech., Vol. 13, pp. R61-R72. https://doi.org/10.1088/0957-0233/13/7/201
  4. Meng, H., Pan, G., Pu, Y. and Woodward, S. H., 2004, "Holographic Particle Image Velocimetry: from Film to Digital Recording," Meas. Sci. Tech., Vol. 15, pp. 673-685. https://doi.org/10.1088/0957-0233/15/4/009
  5. Malek, M., Allano, D., Cöetmellec, S., Ozkul, C., Lebrun, D., 2004, "Digital In-Line Holography for Three-Dimensional Two-Components Particle Tracking Velocimetry," Meas. Sci. Tech., Vol. 15, pp. 699-705. https://doi.org/10.1088/0957-0233/15/4/012
  6. Pu, S. L., Allano, D., Rouland, B. P. and Malek, M., 2005, “Particle Field Characterization by Digital In-Line Holography: 3D Location and Sizing,” Exp. Fluids, Vol. 39, pp. 1–9. https://doi.org/10.1007/s00348-005-0937-0
  7. Yu, L. and Cai, L., 2001, "Iterative Algorithm with a Constraint Condition for Numerical Reconstruction of Three-Dimensional Object from Its Hologram," J. Opt. Soc. Am. A, Vol. 18, pp. 1033-1045. https://doi.org/10.1364/JOSAA.18.001033
  8. Dubois, F., Schockaert, C., Callens, N. and Yourassowsky, C., 2006, "Focus Plane Detection Criteria in Digital Holography Microscopy by Amplitude Analysis," Opt. Express, Vol. 14, pp. 5895-5980. https://doi.org/10.1364/OE.14.005895
  9. Lefebvre, C. B., Coetmellec, S., Lebrun, D. and Ozkul, C., 2000, "Application of Wavelet Transform to Hologram Analysis: Three-Dimensional Location of Particles," Opt. Laser Eng., Vol. 33, pp. 409-421. https://doi.org/10.1016/S0143-8166(00)00050-6
  10. Zhang, Y., Zheng, D. X., Shen, J. L. and Zhang, C. L., 2005, "3D Locations of the Object Directly from In-Line Holograms Using the Gabor Transform," Proc. SPIE 5636, pp. 116-120. https://doi.org/10.1117/12.570465
  11. Choo, Y. J. and Kang, B. S., 2006, "The Characteristics of the Particle Position Along an Optical Axis in Particle Holography," Meas. Sci. Technol, Vol. 17, pp. 761-770. https://doi.org/10.1088/0957-0233/17/4/023
  12. Yang, Y., Kang, B. S., and Choo, Y. J., 2008, "Application of the Correlation Coefficient Method for Determination of the Focal Plane to Digital Particle Holography," Applied Optics, Vol. 47, pp. 817-824. https://doi.org/10.1364/AO.47.000817
  13. Goodman, J. W., 2004, "Introduction to Fourier Optics," McGraw-Hill, pp. 60-61.
  14. Schnars, U. and Jueptner, W., 2005, "Digital Holography," Springer, pp. 41-53.
  15. Yang, Y. and Kang, B. S., 2007, "Application of Digital Holography to Sprays," Proceedings of Asia Display 2007, pp. 2050-2054.
  16. Denis, L., Fournier, C., Fournel, T. and C. Ducottet, 2005, "Twin-Image Noise Reduction By Phase Retrieval in In-Line Digital Holography," Proc. SPIE, Vol. 5914, J1-J14.
  17. Singh, V. R. and Asundi, A. K., 2005, "Amplitude Contrast Image Enhancement in Digital Holography for Particles Analysis," Proc. SPIE, Vol. 5878, pp. 17.1-17.8.
  18. Kim, S. and Lee, S. J., 2006, "Effect of Particle Concentration on Digital Holographic PTV Measurement," Journal of the Korea Society of Mechanical Engineering. Vol. 30, pp. 929-934. https://doi.org/10.3795/KSME-B.2006.30.10.929
  19. Jain, A. K., 1989, "Fundamentals of Digital Image Processing," Prentice-Hall, pp. 276-284.
  20. Baek, S. J. and Lee, S. J., 1996, "A New Two-Frame Particle Tracking Algorithm Using Match Probability," Experiments in Fluids, Vol. 22, pp. 23-32. https://doi.org/10.1007/BF01893303
  21. Ebadian, M. A. and Dong, Z. F., 1998, “Forced Convection, Internal Flow in Ducts," in Handbook of Heat Transfer, W. M. Rohsenow, J. P. Hartnett, Y. I. Cho, ed., McGraw-Hill, pp. 100-131.