FUZZY PAIRWISE STRONG PRE-IRRESOLUTE **CONTINUOUS MAPPINGS**

HYO SAM LEE, JOO SUNG LEE† AND YOUNG BIN IM*

ABSTRACT. We define and characterize a fuzzy pairwise strong pre-irresolute continuous mapping and a fuzzy pairwise strong pre-irresolute open mapping on a fuzzy bitopological space.

AMS Mathematics Subject Classification: 54A40 Key words and phrases: (τ_i, τ_j) -fuzzy strongly preinterior, fuzzy pairwise strong pre-irresolute continuous mapping and fuzzy pairwise strong preirresolute open mapping.

1. Introduction

Singal and Prakash [9] introduced a fuzzy preopen set and studied characteristic properties of a fuzzy precontinuous mapping on a fuzzy topological space. Later, Sampath Kumar [7] defined a (τ_i, τ_j) -fuzzy preopen set and characterized a fuzzy pairwise precontinuous mapping on a fuzzy bitopological space as a natural generalization of a fuzzy topological space. Also, Im [2] characterized a fuzzy pairwise pre-irresolute mapping on a fuzzy bitopological space.

Krsteska [3, 4] also defined a fuzzy strongly preopen set and studied a fuzzy strong precontinuous mapping (a fuzzy strong preopen mapping) on a fuzzy topological space. In particular, he defined and characterized a fuzzy strong pre-irresolute mapping and a fuzzy strong pre-irresolute open mapping on a fuzzy topological space.

Recently, Park, Lee and Im [8] characterized a fuzzy pairwise strong precontinuous mapping and a fuzzy pairwise strong preopen(preclosed) mapping on a fuzzy bitopological space. One purpose of this paper is to find more stronger mapping than we studied in [8].

Received February 9, 2010. Accepted May 27, 2010. *Corresponding author.

[†]The second author was supported by Dongguk University Research Plan 2010.

 $[\]odot$ 2010 Korean SIGCAM and KSCAM.

In this paper, we define a fuzzy pairwise strong pre-irresolute continuous mapping and a fuzzy pairwise pre-irresolute open mapping (fuzzy pairwise pre-irresolute closed mapping) on a fuzzy bitopological space and study their properties. We also give an example is a fuzzy pairwise strong precontinuous mapping but not a fuzzy pairwise strong pre-irresolute continuous mapping.

2. Preliminaries

Let X be a set and let τ_1 and τ_2 be fuzzy topologies on X. Then we call (X, τ_1, τ_2) a fuzzy bitopological space [fbts].

A mapping $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is fuzzy pairwise continuous [fpc] if the induced mapping $f:(X,\tau_k)\to (Y,\tau_k^*)$ is fuzzy continuous for k=1,2.

A mapping $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is fuzzy pairwise open [fp open] (fuzzy pairwise closed [fp closed]) if the induced mapping $f:(X,\tau_k)\to (Y,\tau_k^*)$ is fuzzy open (fuzzy closed) for k=1,2.

Notations. (1) Throughout this paper, we take an ordered pair (τ_i, τ_j) with $i, j \in \{1, 2\}$ and $i \neq j$.

(2) For simplicity, we abbreviate a τ_i -fuzzy open set μ and a τ_j -fuzzy closed set μ with a $\tau_i - fo$ set μ and a $\tau_j - fc$ set μ respectively. Also, we denote the interior and the closure of μ for a fuzzy topology τ_i with τ_i – Int μ and τ_i – Cl μ respectively.

Definition 2.1. [7] Let μ be a fuzzy set on a fbts X. Then we call μ ; (1) a (τ_i, τ_j) -fuzzy preopen $[(\tau_i, \tau_j) - fpo]$ set on X if

$$\mu \leq \tau_i - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu)$$
 and

(2) a (τ_i, τ_j) -fuzzy preclosed $[(\tau_i, \tau_j) - fpc]$ set on X if

$$\tau_i - \operatorname{Cl}(\tau_i - \operatorname{Int} \mu) \leq \mu.$$

Definition 2.2. [7] Let μ be a fuzzy set on a fbts X.

(1) The (τ_i, τ_j) -preinterior of μ , $[(\tau_i, \tau_j) - pInt \mu]$ is

$$\bigvee \{ \nu \mid \nu \leq \mu, \ \nu \text{ is a } (\tau_i, \tau_j) - fpo \text{ set} \}.$$

(2) The (τ_i, τ_j) -preclosure of μ , $[(\tau_i, \tau_j) - pCl\mu])$ is

$$\bigwedge \{ \nu \mid \nu \ge \mu, \ \nu \text{ is a } (\tau_i, \tau_j) - fpc \text{ set} \}.$$

Definition 2.3. [8] Let μ be a fuzzy set on a fbts X. Then we call μ ;

(1) a (τ_i, τ_j) -fuzzy strongly preopen $[(\tau_i, \tau_j) - fspo]$ set on X if

$$\mu \le \tau_i - \operatorname{Int}((\tau_i, \tau_i) - \operatorname{pCl}\mu)$$
 and

(2) a (τ_i, τ_j) -fuzzy strongly preclosed $[(\tau_i, \tau_j) - fspc]$ set on X if

$$\tau_i - \operatorname{Cl}((\tau_i, \tau_i) - \operatorname{pInt} \mu) \le \mu.$$

It is clear that a $\tau_i - fo$ set is a $(\tau_i, \tau_j) - fspo$ set and a $(\tau_i, \tau_j) - fspo$ set is a $(\tau_i, \tau_j) - fspo$ set on a $fbts\ X$. But the converses are not true in general [8].

Proposition 2.4. [8] (1) A union of (τ_i, τ_j) – fspo sets is a (τ_i, τ_j) – fspo set. (2) An intersection of (τ_i, τ_j) – fspc sets is a (τ_i, τ_j) – fspc set.

We remark an intersection of two $(\tau_i, \tau_j) - fspo$ sets need not be a $(\tau_i, \tau_j) - fspo$ set and a union of two $(\tau_i, \tau_j) - fspo$ sets need not be a $(\tau_i, \tau_j) - fspo$ set [8].

Definition 2.5. [8] Let μ be a fuzzy set on a fbts X.

(1) The (τ_i, τ_j) -strongly preinterior of μ , $[(\tau_i, \tau_j) - spInt \mu]$ is

$$\bigvee \{ \nu \mid \nu \leq \mu, \ \nu \text{ is a } (\tau_i, \tau_j) - fspo \text{ set} \}.$$

(2) The (τ_i, τ_j) -strongly preclosure of μ , $[(\tau_i, \tau_j) - spCl\mu]$ is

$$\bigwedge \{ \nu \mid \nu \ge \mu, \ \nu \text{ is a } (\tau_i, \tau_j) - fspc \text{ set} \}.$$

Obviously, (τ_i, τ_j) – spCl μ is the smallest (τ_i, τ_j) – fspc set which contains μ , and (τ_i, τ_j) – spInt μ is the largest (τ_i, τ_j) – fspo set which is contained in μ . Therefore, (τ_i, τ_j) – spCl $\mu = \mu$ for every (τ_i, τ_j) – fspc set μ and (τ_i, τ_j) – spInt $\mu = \mu$ for every (τ_i, τ_j) – fspo set μ .

Moreover, we have

$$\tau_i - \operatorname{Int} \mu \le (\tau_i, \tau_j) - \operatorname{spInt} \mu \le (\tau_i, \tau_j) - \operatorname{pInt} \mu \le \mu,$$

$$\mu \le (\tau_i, \tau_j) - \operatorname{pCl} \mu \le (\tau_i, \tau_j) - \operatorname{spCl} \mu \le \tau_i - \operatorname{Cl} \mu.$$

We state the following lemma from the above definition, which will be used later.

Lemma 2.6. [8] Let μ be a fuzzy set on a fbts X. Then

$$(\tau_i, \tau_i) - spInt(\mu^c) = ((\tau_i, \tau_i) - spCl\mu)^c$$

and

$$(\tau_i, \tau_j) - spCl(\mu^c) = ((\tau_i, \tau_j) - spInt\mu)^c.$$

Definition 2.7. [8] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called a fuzzy pairwise strong precontinuous [fpspc] mapping if $f^{-1}(\nu)$ is a $(\tau_i,\tau_j)-fspo$ set on X for each τ_i^*-fo set ν on Y.

It is clear that every fpc mapping is a fpspc mapping and every fpspc mapping is a fppc mapping on fbts. But the converses are not true in general [8].

Definition 2.8. [8] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called:

- (1) a fuzzy pairwise strong preopen [fpsp open] mapping if $f(\mu)$ is a (τ_i^*, τ_j^*) fspo set on Y for each $\tau_i fo$ set μ on X and
- (2) a fuzzy pairwise strong preclosed [fpsp closed] mapping if $f(\mu)$ is a (τ_i^*, τ_j^*) fspc set on Y for each $\tau_i fc$ set μ on X.

It is clear that every $fp \ open(fp \ closed)$ mapping is a $fpsp \ open(fpsp \ closed)$ mapping and every $fpsp \ open(fpsp \ closed)$ mapping is a $fpp \ open(fpsp \ closed)$ mapping on fbts. But the converses are not true in general [8].

3. Fuzzy pairwise strong pre-irresolute continuous mappings

In this section, we introduce a fuzzy pairwise strong pre-irresolute continuous mapping and a fuzzy pairwise strong pre-irresolute open mapping which are stronger than a fuzzy pairwise strong precontinuous mapping and a fuzzy pairwise strong pre-irresolute continuous mapping and a fuzzy pairwise strong pre-irresolute continuous mapping and a fuzzy pairwise pre-irresolute open mapping.

Definition 3.1. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called a fuzzy pairwise strong pre-irresolute continuous [fpsp-irresolute continuous] mapping if $f^{-1}(\nu)$ is a $(\tau_i,\tau_j)-fspo$ set on X for each $(\tau_i^*,\tau_j^*)-fspo$ set ν on Y.

It is clear that every fpsp-irresolute continuous mapping is fpspc from the above definitions. But the converse is not true in general as the following example shows.

Example 3.2. Let $\mu_1, \mu_2, \mu_3, \mu_4, \mu_5$ and μ_6 be fuzzy sets on $X = \{a, b, c\}$ with

$$\begin{split} &\mu_1(a)=0.9, \mu_1(b)=0.5, \mu_1(c)=0.9,\\ &\mu_2(a)=0.5, \mu_2(b)=0.7, \mu_2(c)=0.5,\\ &\mu_3(a)=0.8, \mu_3(b)=0.5, \mu_3(c)=0.8,\\ &\mu_4(a)=0.8, \mu_4(b)=0.5, \mu_4(c)=0.7,\\ &\mu_5(a)=0.5, \mu_5(b)=0.5, \mu_5(c)=0.5 \text{ and}\\ &\mu_6(a)=0.3, \mu_6(b)=0.4, \mu_6(c)=0.3. \end{split}$$

Let

$$\tau_1 = \{0_X, \mu_4, \mu_6, 1_X\}, \tau_2 = \{0_X, \mu_3, \mu_6, 1_X\} \text{ and }$$

$$\tau_1^* = \{0_X, \mu_1, 1_X\}, \tau_2^* = \{0_X, \mu_2, 1_X\}.$$

be fuzzy topologies on X.

Then we can show that the identity mapping $i_X : (X, \tau_1, \tau_2) \to (X, \tau_1^*, \tau_2^*)$ is fpspc but not fpsp-irresolute continuous and μ_5 is a $(\tau_i^*, \tau_j^*) - fspo$ set but not a $(\tau_i, \tau_j) - fspo$ set. \square

Theorem 3.3. Let $f:(X, \tau_1, \tau_2) \to (Y, \tau_1^*, \tau_2^*)$ be a mapping. Then the following statements are equivalent:

- (1) f is fpsp-irresolute continuous.
- (2) The inverse image of each (τ_i^*, τ_j^*) fspc set on Y is a (τ_i, τ_j) fspc set on X.
 - (3) $f((\tau_i, \tau_j) spCl\mu) \le (\tau_i^*, \tau_j^*) spCl(f(\mu))$ for each fuzzy set μ on X.
 - $(4) (\tau_i, \tau_j) spCl(f^{-1}(\nu)) \leq f^{-1}((\tau_i^*, \tau_j^*) spCl\nu) \text{ for each fuzzy set } \nu \text{ on } Y.$
- (5) $f^{-1}((\tau_i^*, \tau_j^*) spInt\nu) \le (\tau_i, \tau_j) spInt(f^{-1}(\nu))$ for each fuzzy set ν on Y.

Proof. (1) implies (2): Let ν be a $(\tau_i^*, \tau_j^*) - fspc$ set on Y. Then ν^c is a $(\tau_i^*, \tau_j^*) - fspo$ set on Y. Since f is fpsp-irresolute continuous, $f^{-1}(\nu^c) = (f^{-1}(\nu))^c$ is a $(\tau_i, \tau_j) - fspo$ set on X. Hence $f^{-1}(\nu)$ is a $(\tau_i, \tau_j) - fspc$ set on Y

(2) implies (3): Let μ is a fuzzy set on X. Then $f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu)))$ is a $(\tau_i, \tau_j) - fspc$ set on X. Thus

$$(\tau_i, \tau_j) - \operatorname{spCl} \mu \le (\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(f(\mu)))$$

$$\le (\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu))))$$

$$= f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu))).$$

Hence

$$f((\tau_i, \tau_j) - \operatorname{spCl}\mu) \le f(f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu))))$$

$$\le (\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu)).$$

(3) implies (4): Let ν be a fuzzy set on Y. Then

$$f((\tau_i, \tau_j) - \text{spCl}(f^{-1}(\nu))) \le (\tau_i^*, \tau_j^*) - \text{spCl}(f(f^{-1}(\nu))) \le (\tau_i^*, \tau_j^*) - \text{spCl}(\nu)$$

Hence

$$(\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(\nu)) \le f^{-1}(f((\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(\nu))))$$

$$\le f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}(\nu).$$

(4) implies (5): Let ν be a fuzzy set on Y. Then

$$(\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(\nu^c)) \le f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}(\nu^c)).$$

Hence, by Lemma 2.6,

$$f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spInt} \nu) = f^{-1}(((\tau_i^* \tau_j^*) - \operatorname{spCl}(\nu^c))^c)$$

$$\leq ((\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(\nu^c)))^c$$

$$= (\tau_i, \tau_j) - \operatorname{spInt}(f^{-1}(\nu)).$$

(5) implies (1): Let ν be a $(\tau_i^*, \tau_j^*) - fspo$ set on Y. Then

$$f^{-1}(\nu) = f^{-1}((\tau_i^* \tau_i^*) - \text{spInt}\,\nu) \le (\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu)).$$

Hence $f^{-1}(\nu)$ is a $(\tau_i, \tau_j) - fspo$ set on X and therefore, f is fpsp-irresolute continuous.

Theorem 3.4. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a bijection. f is fpsp-irresolute continuous if and only if for each fuzzy set μ on X,

$$(\tau_i^*, \tau_j^*) - spInt(f(\mu)) \le f((\tau_i, \tau_j) - spInt\mu).$$

Proof. Let μ be a fuzzy set on X. Then, by Theorem 3.3,

$$f^{-1}((\tau_i^*\tau_i^*) - \text{spInt}(f(\mu))) \le (\tau_i, \tau_i) - \text{spInt}(f^{-1}(f(\mu))).$$

Since f is a bijection,

$$(\tau_i^*, \tau_i^*) - \operatorname{spInt}(f(\mu)) = f(f^{-1}((\tau_i^* \tau_i^*) - \operatorname{spInt}(f(\mu)))) \le f((\tau_i, \tau_j) - \operatorname{spInt}(\mu)).$$

Conversely, let ν be a fuzzy set on Y. Then

$$(\tau_i^*, \tau_i^*) - \text{spInt}(f(f^{-1}(\nu))) \le f((\tau_i, \tau_i) - \text{spInt}(f^{-1}(\nu))).$$

Recall that f is a bijection. Hence

$$(\tau_i^*, \tau_j^*) - \text{spInt}\,\nu = (\tau_i^*, \tau_j^*) - \text{spInt}(f(f^{-1}(\nu))) \le f((\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu))).$$

and

$$f^{-1}((\tau_i^*, \tau_j^*) - \text{spInt}\,\nu) \le f^{-1}(f((\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu))))$$

= $(\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu)).$

Therefore, by Theorem 3.3, f is fpsp-irresolute contuous.

Definition 3.5. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called (1) a fuzzy pairwise strong pre-irresolute open [fpsp-irresolute open] mapping if $f(\mu)$ is a $(\tau_i^*,\tau_j^*)-fspo$ set on Y for each $(\tau_i,\tau_j)-fspo$ set μ on X and (2) a fuzzy pairwise strong pre-irresolute closed [fpsp-irresolute closed] map-

ping if $f(\mu)$ is a (τ_i^*, τ_j^*) – fspc set on Y for each (τ_i, τ_j) – fspc set μ on X.

It is clear that every fpsp-irresolute open mapping and every fpsp-irresolute closed mapping are fpsp open and fpsp closed respectively. But the converses are not true in general.

In fact, in Example 3.2, the identity mapping $i_X:(X,\tau_1^*,\tau_2^*)\to (X,\tau_1,\tau_2)$ is $fpsp\ open(fpsp\ closed)$ but not fpsp-irresolute open(fpsp-irresolute closed).

Theorem 3.6. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then the following statements are equivalent:

- (1) f is fpsp-irresolute open.
- (2) $f((\tau_i, \tau_j) spInt\mu) \leq (\tau_i^*, \tau_j^*) spInt(f(\mu))$ for each fuzzy set μ on X. (3) $(\tau_i, \tau_j) spInt(f^{-1}(\nu)) \leq f^{-1}((\tau_i^*, \tau_j^*) spInt\nu)$ for each fuzzy set ν on

Proof. (1) implies (2): Let μ be a fuzzy set on X. Then $f((\tau_i, \tau_j) - \operatorname{spInt} \mu)$ is a $(\tau_i^*, \tau_i^*) - fspo$ set on Y and $f((\tau_i, \tau_j) - \operatorname{spInt} \mu) \leq f(\mu)$. Hence

$$f((\tau_i, \tau_j) - \operatorname{spInt} \mu) = (\tau_i^*, \tau_j^*) - \operatorname{spInt}(f((\tau_i, \tau_j) - \operatorname{spInt} \mu))$$

$$\leq (\tau_i^*, \tau_j^*) - \operatorname{spInt}(f(\mu)).$$

(2) implies (3): Let ν be a fuzzy set on Y. Then

$$f((\tau_i, \tau_j) - \operatorname{spInt}(f^{-1}(\nu))) \le (\tau_i^*, \tau_j^*) - \operatorname{spInt}(f(f^{-1}(\nu)))$$

$$\le (\tau_i^*, \tau_j^*) - \operatorname{spInt}\nu.$$

Hence

$$(\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu)) \le f^{-1}(f((\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu))))$$

 $\le f^{-1}((\tau_i^*, \tau_j^*) - \text{spInt}(\nu).$

(3) implies (1): Let μ be a (τ_i, τ_i) – fspo set on X. Then

$$\mu = (\tau_i, \tau_j) - \operatorname{spInt} \mu \le (\tau_i, \tau_j) - \operatorname{spInt}(f^{-1}(f(\mu)))$$

$$\le f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spInt}(f(\mu))).$$

We have

$$f(\mu) \leq f(f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spInt}(f(\mu)))) \leq (\tau_i^*, \tau_j^*) - \operatorname{spInt}(f(\mu)).$$

Hence $f(\mu) = (\tau_i^*, \tau_i^*) - \text{spInt}(f(\mu))$. Consequently, $f(\mu)$ is a $(\tau_i^*, \tau_i^*) - fspo$ set on Y and therefore, f is fpsp-irresolute open.

Theorem 3.7. A mapping $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is fpsp-irresolute closed if and only if $(\tau_i^*, \tau_j^*) - spCl(f(\mu)) \le f((\tau_i, \tau_j) - spCl(\mu))$ for each fuzzy set μ on X.

Proof. Let μ be a fuzzy set on X. Then $f((\tau_i, \tau_j) - \operatorname{spCl} \mu)$ is a $(\tau_i^*, \tau_i^*) - fspo$ set on Y and $f(\mu) \leq f((\tau_i, \tau_i) - \operatorname{spCl} \mu)$. Hence

$$(\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu)) \le (\tau_i^*, \tau_j^*) - \operatorname{spCl}(f((\tau_i, \tau_j) - \operatorname{spCl}\mu))$$
$$= f((\tau_i, \tau_j) - \operatorname{spCl}\mu).$$

Conversely, let μ be a $(\tau_i, \tau_j) - fspc$ set on X. Then

$$(\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu)) \le f((\tau_i, \tau_j) - \operatorname{spCl} \mu)$$

= $f(\mu)$.

Consequently, $f(\mu)$ is a $(\tau_i^*, \tau_i^*) - fspc$ set on Y and therefore f is a fpspirresolute closed mapping.

Theorem 3.8. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a bijection. Then the following statements are equivalent:

- (1) f is fpsp-irresolute closed.
- (2) $f^{-1}((\tau_i^*, \tau_j^*) spCl\nu) \le (\tau_i, \tau_j) spCl(f^{-1}(\nu))$ for each fuzzy set ν on Y. (3) f is fpsp-irresolute open.
- (4) f^{-1} is fpsp-irresolute continuous.

Proof. (1) implies (2): Let ν be a fuzzy set on Y. Then, by Theorem 3.7,

$$(\tau_i^*, \tau_i^*) - \text{spCl}(f(f^{-1}(\nu))) \le f((\tau_i, \tau_j) - \text{spCl}(f^{-1}(\nu))).$$

Hence

$$f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(f^{-1}(\nu)))) \le f^{-1}(f((\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(\nu)))).$$

Since f is a bijection,

$$f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spCl}\nu) \le (\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(\nu)).$$

(2) implies (1): Let μ be a fuzzy set on X. Then

$$f^{-1}((\tau_i^*, \tau_j^*) - \text{spCl}(f(\mu))) \le (\tau_i, \tau_j) - \text{spCl}(f^{-1}(f(\mu))).$$

Hence

$$f(f^{-1}((\tau_i^*, \tau_i^*) - \operatorname{spCl}(f(\mu)))) \le f((\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(f(\mu)))).$$

Since f is a bijection,

$$(\tau_i^*, \tau_i^*) - \operatorname{spCl}(f(\mu)) \le f((\tau_i, \tau_j) - \operatorname{spCl}\mu).$$

Therefore, by Theorem 3.7, f is fpsp-irresolute closed.

(2) implies (3): Let ν be a fuzzy set on Y. Then

$$f^{-1}((\tau_i^*, \tau_i^*) - \operatorname{spCl}(\nu^c)) \le (\tau_i, \tau_i) - \operatorname{spCl}(f^{-1}(\nu^c)).$$

By Lemma 2.6,

$$(\tau_{i}, \tau_{j}) - \operatorname{spInt}(f^{-1}(\nu)) = ((\tau_{i}, \tau_{j}) - \operatorname{spCl}(f^{-1}(\nu^{c})))^{c}$$

$$\leq f^{-1}(((\tau_{i}^{*}, \tau_{j}^{*}) - \operatorname{spCl}(\nu^{c}))^{c})$$

$$= f^{-1}((\tau_{i}^{*}, \tau_{i}^{*}) - \operatorname{spInt}\nu).$$

Hence f is fpsp-irresolute open from Theorem 3.6.

(3) implies (4): Let ν be a fuzzy set on Y. Then

$$(\tau_i, \tau_j) - \operatorname{spInt}(f^{-1}(\nu)) \le f^{-1}((\tau_i^*, \tau_i^*) - \operatorname{spInt}\nu).$$

Since f is a bijection, by Theorem 3.4, f^{-1} is fpsp-irresolute continuous.

(4) implies (2): It is clear from Theorem 3.3.

We have the following corollaries from Theorem 3.3, Theorem 3.7 and Theorem 3.6.

Corollary 3.9. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then, f is a fpsp-irresolute closed and fpsp-irresolute continuous if and only if $f((\tau_i, \tau_i))$ $spCl\mu$) = $(\tau_i^*, \tau_j^*) - spCl(f(\mu))$ for each fuzzy set μ on X.

Corollary 3.10. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then, f is fpsp-irresolute open and fpsp-irresolute continuous if and only if $f^{-1}((\tau_i^*, \tau_i^*) - \tau_i^*)$ $spCl\nu) = (\tau_i, \tau_j) - spCl(f^{-1}(\mu))$ for each fuzzy set ν on Y.

A bijection $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is called a fuzzy pairwise strong pre-irresolute homeomorphism if f and f^{-1} are fpsp-irresolute continuous mappings.

Theorem 3.11. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a bijection. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise strong pre-irresolute homeomorphism.
- (2) f^{-1} is a fuzzy pairwise strong pre-irresolute homeomorphism.
- (3) f and f^{-1} are fpsp-irresolute open (fpsp-irresolute closed).
- (4) f is fpsp-irresolute continuous and fpsp-irresolute open (fpsp-irresolute closed).
 - (5) $f((\tau_i, \tau_j) spCl\mu) = (\tau_i^*, \tau_j^*) spCl(f(\mu))$ for each fuzzy set μ on X.
- (6) $f((\tau_i, \tau_j) spInt\mu) = (\tau_i^*, \tau_j^*) spInt(f(\mu))$ for each fuzzy set μ on X. (7) $f^{-1}((\tau_i^*, \tau_j^*) spInt\nu) = (\tau_i, \tau_j) spInt(f^{-1}(\nu))$ for each fuzzy set ν on
 - (8) $(\tau_i, \tau_j) spCl(f^{-1}(\nu)) = f^{-1}((\tau_i^*, \tau_i^*) spCl\nu)$ for each fuzzy set ν on Y.

Proof. (1) implies (2): It follows immediately from the definition of a fuzzy pairwise strong pre-irresolute homeomorphism.

- (2) implies (3) and (3) implies (4): It follows from Theorem 3.8.
- (4) implies (5): It follows from Theorem 3.8 and Corollary 3.9.
- (5) implies (6): Let μ be a fuzzy set on X. Then, by Lemma 2.6,

$$f((\tau_i, \tau_j) - \operatorname{spInt} \mu) = (f((\tau_i, \tau_j) - \operatorname{spCl}(\mu^c)))^c$$
$$= ((\tau_i^*, \tau_j^*) - \operatorname{spCl}(f(\mu^c)))^c$$
$$= (\tau_i^*, \tau_j^*) - \operatorname{spInt} f(\mu).$$

(6) implies (7): Let ν be a fuzzy set on Y. Then

$$f((\tau_i, \tau_j) - \operatorname{spInt}(f^{-1}(\nu)) = (\tau_i^*, \tau_j^*) - \operatorname{spInt}(f(f^{-1}(\nu)))$$
$$= (\tau_i^*, \tau_i^*) - \operatorname{spInt}\nu.$$

Hence

$$f^{-1}(f((\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu)))) = f^{-1}((\tau_i^*, \tau_j^*) - \text{spInt}(\nu)).$$

Therefore,

$$(\tau_i, \tau_j) - \text{spInt}(f^{-1}(\nu)) = f^{-1}((\tau_i^*, \tau_j^*) - \text{spInt } \nu).$$

(7) implies (8): Let ν be a fuzzy set on Y. Then, by Lemma 2.6,

$$(\tau_i, \tau_j) - \operatorname{spCl}(f^{-1}(\nu)) = (f^{-1}((\tau_i^*, \tau_j^*) - \operatorname{spInt}(\nu^c)))^c$$
$$= ((\tau_i, \tau_j) - \operatorname{spInt}(f^{-1}(\nu^c)))^c$$
$$= f^{-1}((\tau_i^*, \tau_i^*) - \operatorname{spCl}\nu).$$

(8) implies (1): It follows from Theorem 3.8 and Corollary 3.10.

References

- 1. Y. B. Im, Fuzzy pairwise γ -irresoluteness, International J. fuzzy and Intelligent Systems, 7 (2007), 188-192.
- Y. B. Im, Fuzzy pairwise pre-irresolute mappings, Far East J. Math. Sci. 13 (2004), 109-118.
- B. Krsteska, Fuzzy strongly preopen sets and fuzzy strong precontinuity, Mat. Vesnik, 50 (1998), 111-123.
- 4. B. Krsteska, Some fuzzy sp-topological properties, Mat. Vesnik, ${\bf 51}$ (1999), 39-51.
- 5. H. S. Lee, J. S. Lee and Y. B. Im, Fuzzy pairwise γ -irresolute homeomorphisms, J. Appl. Math. & Informatics, **26** (2008), 757-766.
- Y. B. Im, E. P. Lee and S. W. Park, Fuzzy pairwise γ-continuous mappings J. Fuzzy Math. 10 (2002), 695-709.
- S. Sampath Kumar, On fuzzy pairwise α-continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems 62 (1994), 231-238.
- 8. K. D. Park, J. S. Lee and Y. B. Im Fuzzy pairwise strong precontinuous mappings, J. Appl. Math. & Informatics, 27 (2009), 725-736.

 M, K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44 (1991), 345-351.

Hyo Sam Lee received his B.S. and Ph.D. at Dongguk University under the direction of Professor D. H. Choi. Since 1980 he has been a professor at Daegu University. His research interests are group representation theory and fuzzy theory.

Dept. of Mathematics, Daegu University, Daegu 712-714, Korea e-mail: leehs@daegu.ac.kr

Joo Sung Lee received his B.S. from Dongguk University and Ph.D. at University of Florida under the direction of Professor B. Brechner. Since 1995 he has been a professor at Dongguk University. His research interests are topological dynamics and fuzzy theory.

 $\operatorname{Dept.}$ of Mathematics, Dongguk University, Seoul 100-715, Korea

e-mail: jsl@dongguk.edu

Young Bin Im received his B.S. and Ph.D. at Dongguk University under the direction of Professor K. D. Park. Since 2009 he has been a professor at Dongguk University. His research interests are fuzzy topological space and fuzzy matrix.

Faculty of General Education, Dongguk University, Seoul 100-715, Korea

e-mail : philpen@dongguk.edu