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PRECONDITIONED AOR ITERATIVE METHOD FOR

Z-MATRICES†

GUANGBIN WANG∗, NING ZHANG AND FUPING TAN

Abstract. In this paper, we present a preconditioned iterative method
for solving linear systems Ax = b, where A is a Z-matrix. We give some
comparison theorems to show that the rate of convergence of the new pre-
conditioned iterative method is faster than the rate of convergence of the
previous preconditioned iterative method. Finally, we give one numerical
example to show that our results are true.
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1. Introduction

For solving linear systems

Ax = b, (1)

where A is an n× n square matrix, and x and b are n-dimensional vectors, the
basic iterative method is

Mxk+1 = Nxk + b, k = 0, 1 · · · (2)

where A = M −N and M is nonsingular. Thus (2) can be written as

xk+1 = Txk + c, k = 0, 1 · · ·
where T = M−1N , c = M−1b.

Assuming that A has unit diagonal entries and let A = I −L−U , where I is
the identity matrix, −L and −U are strictly lower and strictly upper triangular
parts of A, respectively. Then,
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(i) the iteration matrix of the classical Gauss-Seidel-type method is given by

T = (I − L)−1U (3)

(ii) the iteration matrix of the classical SOR-type method is given by

Lr = (I − rL)−1[(1− r)I + rU ] (4)

where r 6= 0 is a real parameter called the relaxation parameter.
(iii) the iteration matrix of the classical AOR-type method is given by

Lr,w = (I − rL)−1[(1− w)I + (w − r)L+ wU ] (5)

where w and r are real parameters and w 6= 0.
Transform the original system (1) into the preconditioned form PAx = Pb.
Then, we can define the basic iterative scheme:

Mpx
k+1 = Npx

k + Pb, k = 0, 1 · · ·
where PA = Mp−Np and Mp is nonsingular. Thus the equation above can also
be written as

xk+1 = Txk + c, k = 0, 1 · · ·
where T = M−1

p Np, c = M−1
p Pb.

The preconditioned matrix of the following general form was introduced by
[1]:

P = I + S =




1 0 · · · −a1k1 0 0
0 1 · · · 0 −a2k2 0
...

...
...

...
...

...
0 0 −ankn · · · 0 1




where i 6= ki, ki ∈ {1, 2, · · · , i− 1, i+ 1, · · · , n}, i = 1, 2, · · · , n.
Assuming that

Â = PA = (I + S)A = D̂ − L̂− Û ,

with

D̂ = I +D1, L̂ = L+ L1, Û = U + U1,

whereD1, −L1 and −U1 are diagonal, strictly lower and strictly upper triangular
parts of SA, respectively.

We consider these splittings for Â:

Â =





(D̂ − L̂)− Û

1

r
(D̂ − rL̂)− 1

r
[(1− r)D̂ + rÛ ]

1

w
(D̂ − rL̂)− 1

w
[(1− w)D̂ + (w − r)L̂+ wÛ ]

(6)
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In view of (6), the iteration matrices associated with Â are:

T̂ = (D̂ − L̂)−1Û (7)

L̂r = (D̂ − rL̂)−1[(1− r)D̂ + rÛ ] (8)

L̂r,w = (D̂ − rL̂)−1[(1− w)D̂ + (w − r)L̂+ wÛ ] (9)

In paper [2], Xue-Zhong Wang et al presented the preconditioned SOR-type
iterative method with the preconditioned matrix P , and gave some comparison
theorems. The main theorem in [2] is given as follows.

Theorem ([2]). Let Lr and L̂r be the iteration matrices of the SOR-type
methods given by (4) and (8). If A is a Z-matrix with 0 < aiki

akii < 1, (i =
1, 2 · · · , n), and 0 < r < 1, then

(1) ρ(L̂r) > ρ(Lr), if ρ(Lr) > 1;

(2) ρ(L̂r) = ρ(Lr), if ρ(Lr) = 1;

(3) ρ(L̂r) < ρ(Lr), if ρ(Lr) < 1.

Now, we extend the preconditioned matrix, and consider a more general case:

(P ′)ij = (I + S′)ij =
{−aij , j 6= i;

1, j = i
(10)

where

S′ =




0 −a12 · · · −a1,n−1 −a1n
−a21 0 · · · −a2,n−1 −a2n
...

...
...

...
...

−an1 −an2 · · · −an,n−1 0


 .

In this paper, we present the preconditioned AOR-type iterative method for
solving linear systems Ax = b, where A is a Z-matrix. We give some comparison
theorems to show that the rate of convergence of the new preconditioned iterative
method is faster than the rate of convergence of the previous preconditioned
iterative method. Finally, we give one numerical example to show that our
results are true.

Let Ā = P ′A = (I + S′)A = D̄ − L̄− Ū , with

D̄ = I + D̄1, L̄ = L+ L̄1, Ū = U + Ū1,

where D̄1, −L̄1 and −Ū1 are diagonal, strictly lower and strictly upper triangular
parts of S′A , respectively.

By (7)-(9), we can get:

T̄ = (D̄ − L̄)−1Ū (11)

L̄r = (D̄ − rL̄)−1[(1− r)D̄ + rŪ ] (12)

L̄r,w = (D̄ − rL̄)−1[(1− w)D̄ + (w − r)L̄+ wŪ ] (13)
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Remark 1: It is well known that for certain values of the parameters w and
r, we obtain the successive over relaxation (SOR) and Gauss-Seidel methods,
whose iteration matrices are denoted by Lr and T , respectively.

2.Comparison Results of the preconditioned AOR-type method
with preconditioner P ′ and the classical AOR-type method

We need the following definitions and results.
Lemma 2.1 (Young [3]). A matrix A is a Z-matrix if aij ≤ 0, ∀i, j = 1, 2, · · · , n,
i 6= j.

Lemma 2.2 (Young [3]). Let A ≥ 0 be an irreducible matrix. Then
(1) A has a positive real eigenvalue equals to its spectral radius;
(2) To ρ(A) there corresponds an eigenvector x > 0;
(3) ρ(A) is a simple eigenvalue of A .

Lemma 2.3 (Varga [4]). Let A be a nonnegative matrix. Then
(1) If αx ≤ Ax for some nonnegative vector x, x 6= 0 , then α ≤ ρ(A);
(2) If Ax ≤ βx for some positive vector x , then ρ(A) ≤ β. Moreover, if A

is irreducible and if 0 6= αx ≤ Ax ≤ βx for some nonnegative vector x, then
α ≤ ρ(A) ≤ β and x is a positive vector.

Now we give the main results as follows.

Theorem 2.1. Let A be a Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1, i = 1, 2, · · · , n,
then Ā is a Z-matrix.

Proof. From the definition of Ā, we can obtain:




aij −
n∑

k=1,k 6=i

aikaki ≤ 0, j 6= i;

1−
n∑

k=1,k 6=i

aikaki > 0, j = i,

where i = 1, 2, · · · , n. Then, we complete the proof. ¤

Theorem 2.2. Let T , T̄ , Lr, L̄r, Lr,w, L̄r,w be the iteration matrices of
the methods given by (3)-(5) and (11)-(13). If A is a Z-matrix with 0 <

n∑
k=1,k 6=i

aikaki < 1, i = 1, 2, · · · , n, then T , T̄ , Lr, L̄r, Lr,w, and L̄r,w are non-

negative and irreducible matrices.

Proof. By Theorem 2.1 in paper [2], A is an irreducible Z-matrix. And from
A = I−L−U , we have L+U is a nonnegative and irreducible matrix. Further,
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since

L̄r,w = [D̄ − rL̄]−1[(1− w)D̄ + (w − r)L̄+ wŪ ]

and L̄, Ū ≥ 0, we have

L̄r,w = [D̄ + rL̄+ (rL̄)2 + · · · ][(1− w)D̄ + (w − r)L̄+ wŪ ]

= (1− w)D̄2 + (w − r)D̄L̄+ wD̄Ū + r(1− w)D̄L̄+ r(w − r)L̄2 + rwL̄Ū

+ nonnegativeterms.

From the definition of Ā, we can have, D̄ ≥ 0, L̄ ≥ 0, Ū ≥ 0. Therefore, L̄r,w is
a nonnegative and irreducible matrix. Similarly, we can prove T , T̄ , Lr, L̄r, and
Lr,w are nonnegative and irreducible matrices.

Some results for the AOR-type, SOR-type and Gauss-Seidel-type methods
are given below:

Theorem 2.3. Let Lr,w and L̄r,w be the iteration matrices of the AOR-type

methods given by (5) and (13). If A is a Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1,

i = 1, 2, · · · , n, 0 ≤ r ≤ w ≤ 1, w 6= 0, then

(1) ρ(L̄r,w) > ρ(Lr,w), if ρ(Lr,w) > 1;

(2) ρ(L̄r,w) = ρ(Lr,w), if ρ(Lr,w) = 1;

(3) ρ(L̄r,w) < ρ(Lr,w), if ρ(Lr,w) < 1.

Proof. From Theorem 2.1, it is clear that Lr,w and L̄r,w are nonnegative and
irreducible matrices. Thus, from Lemma 2.2, we know that there exists a positive
vector x = (x1, x2, · · · , xn)

T such that

Lr,wx = λx,

where λ = ρ(Lr,w), or, equivalently,

[(1− w)I + (w − r)L+ wU ] = λ(I − rL)x.

Now we consider
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L̄r,wx− λx

= [D̄ − rL̄]−1[(1− w)D̄ + (w − r)L̄+ wŪ ]x− λx

= [D̄ − rL̄]−1[(1− w)D̄ + (w − r)L̄+ wŪ − λ(D̄ − rL̄)]x

= [D̄ − rL̄]−1[D̄ − wD̄ + wL̄− rL̄+ wŪ1 + wU − λD̄ + λrL̄]x

= [D̄ − rL̄]−1[w(−D̄ + L̄+ Ū1 + U)− rL̄+ (1− λ)D̄ + λrL̄]x

= [D̄ − rL̄]−1[w(Ū − D̄ + L̄)− r(1− λ)L̄+ (1− λ)D̄]x

= [D̄ − rL̄]−1[w(Ū1 − D̄1 + L̄1) + r(λ− 1)L̄+ (1− λ)D̄1]x

= [D̄ − rL̄]−1[S
′
[(1− w)I + (w − r)L+ wU ]

+ S
′
(1− wL+ wL− rL) + r(λ− 1)L̄1 − (λ− 1)D̄1]x

= [D̄ − rL̄]−1[λS
′
(I − rL)− S

′
(I − rL) + r(λ− 1)L̄1 − (λ− 1)D̄1]x

= [D̄ − rL̄]−1[(λ− 1)S
′ (1− w)I + (w − r)L+ wU

λ

+ r(λ− 1)L̄1 − (λ− 1)D̄1]x

=
λ− 1

λ
[D̄ − rL̄]−1[(1− w)S

′
+ (w − r)S

′
L+ wS

′
U + λrL̄1 − λD̄1]x.

(14)

Let

y = [D̄ − rL̄]−1[(1− w)S
′
+ (w − r)S

′
L+ wS

′
U + λrL̄1 − λD̄1]x,

then y > 0 .
(1) If λ > 1 , then L̄r,wx−λx ≥ 0 , but not equal to 0. Therefore L̄r,wx ≥ λx.
By Lemma 2.3, we get ρ(L̄r,w) > λ = ρ(Lr,w).
(2) If λ = 1 , then L̄r,wx−λx = 0, but not equal to 0. Therefore L̄r,wx = λx.
By Lemma 2.3, we get ρ(L̄r,w) = λ = ρ(Lr,w).
(3) If λ < 1 , then L̄r,wx−λx < 0, but not equal to 0. Therefore L̄r,wx ≤ λx.
By Lemma 2.3, we get ρ(L̄r,w) < λ = ρ(Lr,w).
Similar to the proof of Theorem 2.3, we can have the following corollaries:

Corollary 2.1. Let Lr and L̄r be the iteration matrices of SOR-type methods

given by (4) and (12). If A is a Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1, i =

1, 2 · · ·n, 0 ≤ r ≤ 1, then

(1) ρ(L̄r) > ρ(Lr), if ρ(Lr) > 1;

(2) ρ(L̄r) = ρ(Lr), if ρ(Lr) = 1;

(3) ρ(L̄r) < ρ(Lr), if ρ(Lr) < 1.

Corollary 2.2. Let T and T̄ be the iteration matrices of Gauss-Seidel-type

methods given by (3) and (11). If A is a Z-matrix with0 <
n∑

k=1,k 6=i

aikaki < 1,
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i = 1, 2 · · ·n, then
(1) ρ(T̄ ) > ρ(T ), if ρ(T ) > 1;

(2) ρ(T̄ ) = ρ(T ), if ρ(T ) = 1;

(3) ρ(T̄ ) < ρ(T ), if ρ(T ) < 1.

3. Comparison results of preconditioned AOR-type methods
with preconditioners P ′ and P

Now, we give some comparison results of preconditioned AOR-type methods
with preconditioners P ′ and P .

Theorem 3.1. Let L̄r,w and L̂r,w be the iteration matrices of the preconditioned
AOR-type methods with the preconditioned matrix P ′ and the preconditioned
AOR-type methods with the preconditioned matrix P , respectively. If A is a

Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1, i = 1, 2 · · ·n, 0 ≤ r ≤ w ≤ 1, w 6= 0, then

(1) ρ(L̄r,w) ≥ ρ(L̂r,w), if ρ(Lr,w) ≥ 1;

(2) ρ(L̄r,w) < ρ(L̂r,w), if ρ(Lr,w) < 1.

Proof. First, from the definition of Ā and Â, we have D̄ − rL̄ ≤ D̂ − rL̂. Then,
since D̄ − rL̄ and D̂ − rL̂ are two lower triangular L-matrices with D̄ − rL̄ ≤
D̂ − rL̂, we can obtain that (D̄ − rL̄)−1 ≥ (D̂ − rL̂)−1. Now consider

L̄r,wx− L̂r,wx = (L̄r,wx− λx)− (L̂r,wx− λx)

In view of (14), we know that L̄r,wx− L̂r,wx equals

λ− 1

λ
(D̄ − rL̄)−1[(1− w)S′L+ (w − r)S′L+ wS′U + λrL̄1 − λD̄1]x

− λ− 1

λ
(D̂ − rL̂)−1[(1− w)SL+ (w − r)SL+ wSU + λrL̄1 − λD̄1]x

≥ λ− 1

λ
(D̂ − rL̂)−1[(1− w)K + (w − r)KL+ wKU ]x,

(15)

where

(K)ij =

{ −aij > 0, j 6= i and j 6= ki;

0, otherwise.

Obviously,

(D̂ − rL̂)−1[(1− w)K + (w − r)KL+ wKU ] ≥ 0.

Therefore,
(1) if λ ≥ 1 , the right hand side of the inequality (15) is greater than zero,

and we can get ρ(L̄r,w) ≥ ρ(L̂r,w) by Lemma 2.3.
(2) if λ < 1 , the right hand side of the inequality (15) is less than zero, and

we can get ρ(L̄r,w) < ρ(L̂r,w) by Lemma 2.3. ¤
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Corollary 3.1. Let L̄r and L̂r be the iteration matrices of the preconditioned
SOR-type methods with the preconditioned matrices P ′ and P , respectively . If

A is a Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1, i = 1, 2 · · ·n, 0 < r ≤ 1, then

(1) ρ(L̄r) ≥ ρ(L̂r), if ρ(Lr) ≥ 1;

(2) ρ(L̄r) < ρ(L̂r), if ρ(Lr) < 1.

Corollary 3.2. Let T̄ and T̂ be the iteration matrices of the preconditioned
Gauss-Seidel-type methods with the preconditioned matrices P ′ and P , respec-

tively. If A is a Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1, i = 1, 2 · · ·n, then

(1) ρ(T̄ ) ≥ ρ(T̂ ), if ρ(T ) ≥ 1;

(2) ρ(T̄ ) < ρ(T̂ ), if ρ(T ) < 1.

Similar to the proof of Theorem 3.1, we can get the following two theorems.

Theorem 3.2. Let Lr,wand L̄r,w be the iteration matrices of the classical
AOR-type methods and the preconditioned AOR-type methods with the precon-

ditioned matrix P ′ , respectively. If A is a Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1,

i = 1, 2 · · ·n, and 0 ≤ r2 < r1 ≤ w ≤ 1, then

(1) ρ(L̄r1,w) ≥ ρ(L̄r2,w), if ρ(Lr,w) ≥ 1;

(2) ρ(L̄r1,w) < ρ(L̄r2,w), if ρ(Lr,w) < 1.

Theorem 3.3. Let Lr,wand L̂r,w be the iteration matrices of the classical
AOR-type methods and the preconditioned AOR-type methods with the precon-

ditioned matrix P , respectively. If A is a Z-matrix with 0 <
n∑

k=1,k 6=i

aikaki < 1,

i = 1, 2 · · ·n, and 0 ≤ r2 < r1 ≤ w ≤ 1, then

(1) ρ(L̂r1,w) ≥ ρ(L̂r2,w), if ρ(Lr,w) ≥ 1;

(2) ρ(L̂r1,w) < ρ(L̂r2,w), if ρ(Lr,w) < 1.

4. Example

We consider the linear system Ax = b, where

A =




1 −0.1 −0.1 0 −0.2 −0.4
−0.3 1 −0.2 0 −0.3 −0.2
0 −0.2 1 −0.5 −0.1 0

−0.1 −0.3 −0.1 1 −0.2 −0.1
−0.2 −0.3 −0.2 −0.1 1 −0.1
−0.3 −0.1 −0.1 −0.2 −0.1 1



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We choose w = 0.6 , then we can obtain the following results by Theorem 2.3,
Theorem 3.1-3.3:

Table 1. Spectral radius for different r of AOR-type methods

r ρ(Lr,w) ρ(L̂r,w) ρ(L̄r,w)

0 0.9131 0.8730 0.8087
0.0500 0.9112 0.8704 0.8053
0.1000 0.9091 0.8676 0.8019
0.1500 0.9070 0.8647 0.7982
0.2000 0.9047 0.8616 0.7945
0.2500 0.9024 0.8584 0.7905
0.3000 0.8999 0.8550 0.7863
0.3500 0.8972 0.8514 0.7820
0.4000 0.8944 0.8476 0.7773
0.4500 0.8915 0.8436 0.7725
0.5000 0.8883 0.8393 0.7673
0.5500 0.8849 0.8348 0.7618
0.6000 0.8813 0.8299 0.7560

From Table 1 , we can conclude that the rate of convergence of the precondi-
tioned AOR-type method is faster than the rate of convergence of the classical
AOR-type iterative method.
Remark 2: From the example, we can easily obtain that the preconditioned
AOR-type method with preconditioner P ′ is better than the method with precon-
ditioner P . If we apply it to the SOR-type method, we can get that the precondi-
tioned SOR-type method with preconditioner P ′ is better than the method with
preconditioner P , which is proposed by paper [2]. If we apply it to the Gauss-
Seidel-type method, we can also get that the preconditioned Gauss-Seidel-type
method with preconditioner P ′ is better than the method with preconditioner
P .
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