
J. Appl. Math. & Informatics Vol. 28(2010), No. 5 - 6, pp. 1263-1275
Website: http://www.kcam.biz

FIXED POINTS SOLUTIONS OF GENERALIZED

EQUILIBRIUM PROBLEMS AND VARIATIONAL

INEQUALITY PROBLEMS

Y. SHEHU∗ AND C. O. COLLINS

Abstract. In this paper, we introduce a new iterative scheme for finding
a common element of the set of common fixed points of infinite family of
nonexpansive mappings and the set of solutions to a generalized equilibrium
problem and the set of solutions to a variational inequality problem in a real
Hilbert space. Then strong convergence of the scheme to a common element
of the three sets is proved. As applications, three new strong convergence
theorems are obtained. Our theorems extend important recent results.
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1. Introduction

Let K be a nonempty closed convex subset of a real Hilbert space H. A mapping
A : K → H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ K. (1)

The variational inequality problem is to find an x∗ ∈ K such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ K. (2)

(See, for example, [2-4]). We shall denote the set of solutions of the variational
inequality problem (2) by V I(K,A).
A mapping A : K → H is called inverse-strongly monotone (see, for example,
[3, 10] if there exists a positive real number α such that 〈Ax−Ay, x−y〉 ≥ α||Ax−
Ay||2, ∀x, y ∈ K. For such a case, A is called α-inverse-strongly monotone.
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A mapping T : K → K is called nonexpansive if

||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ K.

A mapping T : K → K is said to be k-strictly pseudocontractive if there exists
a constant k ∈ [0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2,
for all x, y ∈ K. If k = 0, then the mapping T is nonexpansive. Observe that
if T is a k-strictly pseudocontractive and we put A := I − T , where I is the
identity operator defined on K, then we have that

||(I −A)x− (I −A)y||2 ≤ ||x− y||2 + k||Ax−Ay||2
for all x, y ∈ K and since H is a real Hilbert space, we have that

||(I −A)x− (I −A)y||2 = ||x− y||2 + ||Ax−Ay||2 − 2〈x− y,Ax−Ay〉.
So,

〈x− y,Ax−Ay〉 ≥ 1− k

2
||Ax−Ay||2.

Thus, if T is a k-strictly pseudocontractive mapping, then A = I − T is an
α-inverse strongly monotone operator with α = 1−k

2 .
A point x ∈ K is called a fixed point of T if Tx = x. The set of fixed points of
T is the set F (T ) := {x ∈ K : Tx = x}.
Let F be a bifunction of K × K into R, the set of reals and A : K → H be a
nonlinear mapping. The generalized equilibrium problem is to find x ∈ K such
that

F (x, y) + 〈Ax, y − x〉 ≥ 0, (3)

for all y ∈ K. The set of solutions of this generalized equilibrium problem is
denoted by EP . Thus

EP := {x∗ ∈ K : F (x∗, y) + 〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ K}.
In the case of A ≡ 0, EP is denoted by EP (F ) and in the case of F ≡ 0, EP is
denoted by V I(K,A). The problem (3) includes as special cases, optimization
problems, variational inequalities, minimax problems, Nash equilibrium prob-
lems in noncooperative games, etc (see, for example, [1, 12]). Very recently, the
problem of approximating fixed points of nonexpansive mappings which are also
solutions to generalized equilibrium problem has become an interesting area of
research for many authors in fixed point theory and many iterative schemes have
been developed. Furthermore, these iterative schemes are for either single non-
expansive mapping (see, for example, [8, 10, 11, 17], [22-24] and the references
contained therein) or finite family of nonexpansive mappings (see, for example,
[15], [18] and the references contained therein) or infinite family of nonexpansive
mappings (see, for example, [16, 21, 26] and the references contained therein).
We remark here that many of the algorithms constructed for approximation of
common fixed points of family of nonexpansive mappings which are also so-
lutions to generalized equilibrium problems involve the so-called Wn-mapping
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generated by Tn, Tn−1, ..., T1 mappings (see, for example, [5-7], [25] and the
references contained therein). Also, the problem of approximating the common
fixed points of finite family of asymptotically nonexpansive mappings which are
also solutions to variational inequality problems have also been considered (see,
for example, [13, 20]).

In this paper, we propose a new iterative scheme for finding a common el-
ement of the set of common fixed points of an infinite family of nonexpansive
mappings and the set of solutions to a generalized equilibrium problem and the set
of solutions to a variational inequality problem in a real Hilbert space. We show
that the iterative scheme proposed converges strongly to a common element of
the three sets. Then, three new strong convergence theorems are deduced. Our
proposed algorithm does not involve the Wn-mappings for the family of opera-

tors considered. Furthermore, the condition: ”Let
∞∑

n=1
sup{||Tn+1x−Tnx|| : x ∈

B} < ∞ for any bounded subset B of K and T be a mapping of K into itself de-

fined by Tx := lim
n→∞

Tnx for all x ∈ K and suppose that F (T ) =
∞⋂

n=1
F (Tn) 6= ∅”

used in [14] and [19] is dispensed with in our iterative algorithm.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈., .〉 and norm ||.|| and let K
be a nonempty closed convex subset of H. The weak convergence of {xn}∞n=1 to
x is denoted by xn ⇀ x as n → ∞, while the strong convergence of {xn}∞n=1 to
x is written xn → x as n → ∞.
For any point u ∈ H, there exists a unique point PKu ∈ K such that

||u− PKu|| ≤ ||u− y||, ∀y ∈ K. (4)

PK is called the metric projection of H onto K. We know that PK is a nonex-
pansive mapping of H onto K. It is also known that PK satisfies

〈x− y, PKx− PKy〉 ≥ ||PKx− PKy||2, ∀x, y ∈ H. (5)

Furthermore, PKx is characterized by the properties PKx ∈ K and

〈x− PKx, PKx− y〉 ≥ 0, ∀y ∈ K, (6)

||x− PKx||2 ≤ ||x− y||2 − ||y − PKx||2, ∀x ∈ H, y ∈ K. (7)

In the context of the variational inequality problem, (6) implies that

x∗ ∈ V I(K,A) ⇔ x∗ = PK(x∗ − λAx∗), ∀λ > 0.

If A is α-inverse-strongly monotone mapping of K into H, then it is obvious
that A is 1

α -Lipschitz continuous. We also have that for all x, y ∈ K and r > 0,

||(I − rA)x− (I − rA)y||2 = ||x− y − r(Ax−Ay)||2

= ||x− y||2 − 2r〈Ax−Ay, x− y〉+ r2||Ax−Ay||2

≤ ||x− y||2 + r(r − 2α)||Ax−Ay||2
(8)
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So, if r ≤ 2α, then I − rA is a nonexpansive mapping of K into H.
For solving the equilibrium problem for a bifunction F : K × K → R, let us
assume that F satisfies the following conditions:
(A1) F (x, x) = 0 for all x ∈ K;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y,∈ K;
(A3) for each x, y ∈ K, lim

t→0
F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ K, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 1 (Blum and Oettli, [1]). Let K be a nonempty closed convex subset of
H and let F be a bifunction of K ×K into R satisfying (A1)− (A4). Let r > 0
and x ∈ H. Then, there exists z ∈ K such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0 for all y ∈ K.

Lemma 2 (Combettes and Hirstoaga, [9]). Assume that F : K×K → R satisfies
(A1)− (A4). For r > 0 and x ∈ H, define a mapping Tr : H → K as follows:

Tr(x) = {z ∈ K : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ K}

for all z ∈ H. Then, the following hold:
1. Tr is single-valued;
2. Tr is firmly nonexpansive, i.e., ||Trx − Try||2 ≤ 〈Trx − Try, x − y〉 ∀x, y ∈ H;

3. F (Tr) = EP (F );
4. EP (F ) is closed and convex.

3. Main Results

Theorem 1. Let K be a closed convex nonempty subset of a real Hilbert space
H. Let F be a bi-function from K × K satisfying (A1) − (A4), A be an α-
inverse-strongly monotone mapping of K into H, B be an β-inverse-strongly
monotone mapping of K into H and for each i = 1, 2, ..., let Ti : K → K be

a nonexpansive mapping. Suppose F :=
∞⋂
i=1

F (Ti)
⋂
EP

⋂
V I(K,B) 6= ∅. Let

{zn}∞n=1, {yn,i}∞n=1 (i = 1, 2, ...) and {xn}∞n=0 be generated by x0 ∈ K,




C1,i = K, C1 =
∞⋂
i=1

C1,i

x1 = PC1x0

F (zn, y) + 〈Axn, y − zn〉+ 1
rn
〈y − zn, zn − xn〉 ≥ 0 ∀y ∈ K

un = PK(zn − λnBzn)
yn,i = αn,ixn + (1− αn,i)Tiun, n ≥ 1
Cn+1,i = {z ∈ Cn,i : ||yn,i − z|| ≤ ||xn − z||}, n ≥ 1

Cn+1 =
∞⋂
i=1

Cn+1,i

xn+1 = PCn+1x0, n ≥ 1.

(9)
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Assume that {αn,i}∞n=1 ⊂ [0, 1) (i = 1, 2, ...), {rn}∞n=1 ⊂ [0, 2α] and {λn}∞n=1 ⊂
[0, 2β] satisfy

0 < a ≤ rn ≤ b < 2α, 0 < c ≤ λn ≤ f < 2β, 0 ≤ αn,i ≤ di < 1.

Then, {xn}∞n=0 converges strongly to PFx0.

Proof. Put zn := Trn(xn − rnAxn), n ≥ 1. Let x∗ ∈ F and {Trn}∞n=1 be a
sequence of mappings defined as in Lemma 2. Since both I − rnA and I − λnB
are nonexpansive for each n ≥ 1 and x∗ = Trn(x

∗−λnAx∗), we have ||un−x∗|| ≤
||zn − x∗|| and from (8), we have

||zn − x∗||2 =||Trn(xn − rnAxn)− x∗||2
=||Trn(xn − rnAxn)− Trn(x

∗ − rnAx∗)||2
≤||(I − rnA)xn − (I − rnA)x∗||2
≤||xn − x∗||2 + rn(rn − 2α)||Axn −Ax∗||2
≤||xn − x∗||2 (since rn < 2α, ∀n ≥ 1).

Let n = 1, then C1,i = K is closed convex for each i = 1, 2, .... Now assume that
Cn,i is closed convex for some n > 1. Then, from definition of Cn+1,i, we know
that Cn+1,i is closed convex for the same n > 1. Hence, Cn,i is closed convex for
n ≥ 1 and for each i = 1, 2, .... This implies that Cn is closed convex for n ≥ 1
and for each i = 1, 2, .... Furthermore, for n = 1, F ⊂ K = C1,i. For n ≥ 2, let
x∗ ∈ F . Then,

||yn,i − x∗|| ≤αn,i||xn − x∗||+ (1− αn,i)||Tiun − x∗||
≤αn,i||xn − x∗||+ (1− αn,i)||un − x∗||
≤αn,i||xn − x∗||+ (1− αn,i)||zn − x∗||
≤||xn − x∗||,

which shows that x∗ ∈ Cn,i, ∀n ≥ 2, ∀i = 1, 2, ... Thus, F ⊂ Cn,i, ∀n ≥ 1, ∀i =
1, 2, ... Hence, it follows that F ⊂ Cn, ∀n ≥ 1. Since xn = PCnx0, ∀n ≥ 1 and
xn+1 ∈ Cn+1 ⊂ Cn, ∀n ≥ 1, we have

||xn − x0|| ≤ ||xn+1 − x0||, ∀n ≥ 0. (10)

Also, as F ⊂ Cn by (4), it follows that

||xn − x0|| ≤ ||z − x0||, z ∈ F, ∀n ≥ 0. (11)

From (10) and (11), we have that lim
n→∞

||xn − x0|| exists. Hence, {xn}∞n=0 is

bounded and so are {zn}∞n=1, {Axn}∞n=1, {Tiun}∞n=1, {Bzn}∞n=1 and {yn,i}∞n=1,
i = 1, 2, .... For m > n ≥ 1, we have that xm = PCmx0 ∈ Cm ⊂ Cn. By (7), we
obtain

||xm − xn||2 ≤ ||xn − x0||2 − ||xm − x0||2. (12)

Lettingm,n → ∞ and taking the limit in (12), we have xm−xn → 0, m, n → ∞,
which shows that {xn}∞n=0 is Cauchy. In particular, lim

n→∞
||xn+1−xn|| = 0. Since,
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{xn}∞n=0 is Cauchy, we assume that xn → z ∈ K. Since xn+1 = PCn+1x0 ∈ Cn+1,
then ||yn,i − xn+1|| ≤ ||xn − xn+1|| and it follows that

||yn,i − xn|| ≤ ||yn,i − xn+1||+ ||xn − xn+1|| ≤ 2||xn − xn+1||.
Thus,

lim
n→∞

||yn,i − xn|| = 0, i = 1, 2, . . .

Furthermore,

||yn,i − x∗||2 ≤ αn,i||xn − x∗||2 + (1− αn,i)||Tiun − x∗||2
≤αn,i||xn − x∗||2 + (1− αn,i)||un − x∗||2
≤αn,i||xn − x∗||2 + (1− αn,i)||zn − x∗||2
≤αn,i||xn − x∗||2 + (1− αn,i)||Trn(xn − rnAxn)− Trn(x

∗ − rnAx∗)||2
≤αn,i||xn − x∗||2 + (1− αn,i)||(xn − rnAxn)− (x∗ − rnAx

∗)||2

≤αn,i||xn − x∗||2 + (1− αn,i)
[
||xn − x∗||2 + rn(rn − 2α)||Axn −Ax∗||2

]

=||xn − x∗||2 + (1− αn,i)rn(rn − 2α)||Axn −Ax∗||2.
Since 0 < a ≤ rn ≤ b < 2α and 0 ≤ αn,i ≤ di < 1, we have

(1− di)a(2α− b)||Axn −Ax∗||2 ≤||xn − x∗||2 − ||yn,i − x∗||2
≤||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||).

Hence, lim
n→∞

||Axn −Ax∗|| = 0. From (9), we have

||yn,i − x∗||2 ≤ αn,i||xn − x∗||2 + (1− αn,i)||Tiun − x∗||2
≤ αn,i||xn − x∗||2 + (1− αn,i)||un − x∗||2
≤ αn,i||xn − x∗||2 + (1− αn,i)||zn − x∗||2.

(13)

On the other hand,

||zn − x∗||2 ≤ ||Trn(xn − rnAxn)− Trn(x
∗ − rnAx

∗)||2
≤〈(xn − rnAxn)− (x∗ − rnAx∗), zn − x∗〉

=
1

2

[
||(xn − rnAxn)− (x∗ − rnAx∗)||2 + ||zn − x∗||2

− ||(xn − rnAxn)− (x∗ − rnAx
∗)− (zn − x∗)||2

]

≤1

2

[
||xn − x∗||2 − ||(xn − rnAxn)− (x∗ − rnAx

∗)− (zn − x∗)||2

+ ||zn − x∗||2
]

=
1

2

[
||xn − x∗||2 + ||zn − x∗||2 − ||zn − xn||2 + 2rn〈xn − zn, Axn −Ax∗〉

− r2n||Axn −Ax∗||2
]
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and hence
||zn − x∗||2 ≤||xn − x∗||2 − ||zn − xn||2 + 2rn〈xn − zn, Axn −Ax∗〉

− r2n||Axn −Ax∗||2

≤||xn − x∗||2 − ||zn − xn||2 + 2rn||xn − zn||||Axn −Ax∗||.
(14)

Putting (14) into (13), we have

||yn,i − x∗||2 ≤ ||xn − x∗||2 − (1− αn,i)||zn − xn||2 + 2rn||xn − zn||||Axn −Ax∗||.
It follows that
(1− di)||xn − zn||2 ≤||xn − x∗||2 − ||yn,i − x∗||2 + 2rn||xn − zn||||Axn −Ax∗||

≤||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||) + 2rn||xn − zn||||Axn −Ax∗||.
Therefore, lim

n→∞
||xn − zn|| = 0. This implies that

||xn+1 − zn|| ≤ ||xn+1 − xn||+ ||xn − zn|| → 0, n → ∞.

Since xn+1 ∈ Cn+1, then

||yn,i − xn+1|| ≤ ||xn − xn+1||. (15)

But yn,i = αn,ixn + (1− αn,i)Tiun implies that

||yn,i − xn+1||2 = αn,i||xn − xn+1||2 + (1− αn,i)||Tiun − xn+1||2

− αn,i(1− αn,i)||xn − Tiun||2.
(16)

Putting (16) into (15), we have

(1−αn,i)||Tiun−xn+1||2 ≤ αn,i(1−αn,i)||xn−Tiun||2+(1−αn,i)||xn−xn+1||2.
Thus,

||Tiun − xn+1||2 ≤ αn,i||xn − Tiun||2 + ||xn − xn+1||2. (17)

But

||Tiun − xn+1||2 =||xn+1 − xn||2 + 2〈xn+1 − xn, xn − Tiun〉
+ ||xn − Tiun||2.

(18)

Putting (18) into (17), we have

(1− di)||xn − Tiun||2 ≤− 2〈xn+1 − xn, xn − Tiun〉
≤2||xn+1 − xn||||xn − Tiun|| → 0, n → ∞.

Hence, lim
n→∞

||xn − Tiun|| = 0, i = 1, 2, ... Furthermore,

||yn,i − x∗||2 ≤ αn,i||xn − x∗||2 + (1− αn,i)||Tiun − x∗||2
≤αn,i||xn − x∗||2 + (1− αn,i)||un − x∗||2
≤αn,i||xn − x∗||2 + (1− αn,i)||PK(zn − λnBzn)− PK(x∗ − λnBx∗)||2
≤αn,i||xn − x∗||2 + (1− αn,i)||(zn − λnBzn)− (x∗ − λnBx∗)||2
≤αn,i||xn − x∗||2 + (1− αn,i)[||zn − x∗||2 + λn(λn − 2β)||Bzn −Bx∗||2]
≤||xn − x∗||2 + (1− αn,i)λn(λn − 2β)||Bzn −Bx∗||2.
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Thus,

(1− αn,i)λn(2β − λn)||Bzn −Bx∗||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2
≤ ||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||).

Since 0 < c ≤ λn ≤ f < 2β, 0 ≤ αn,i ≤ di < 1, we have that
lim

n→∞
||Bzn −Bx∗|| = 0. Now, from (5), we obtain

||un − x∗||2 ≤ ||PK(zn − λnBzn)− PK(x∗ − λnBx∗)||2
≤ 〈(zn − λnBzn)− (x∗ − λnBx∗), un − x∗〉

=
1

2

[
||(zn − λnBzn)− (x∗ − λnBx∗)||2 + ||un − x∗||2

− ||(zn − λnBzn)− (x∗ − λnBx∗)− (un − x∗)||2
]

≤ 1

2

[
||zn − x∗||2 + ||un − x∗||2 − ||(zn − λnBzn)− (x∗ − λnBx∗)− (un − x∗)||2

]

=
1

2

[
||xn − x∗||2 + ||un − x∗||2 − ||un − zn||2 + 2λn〈zn − un, Bzn −Bx∗〉

− λ2
n||Bzn −Bx∗||2

]
.

Thus,

||un − x∗||2 ≤ ||xn − x∗||2 − ||un − zn||2 + 2λn||zn − un||||Bzn −Bx∗||.

Using this last inequality, we obtain from (9) that

||yn,i − x∗||2 ≤ αn,i||xn − x∗||2 + (1− αn,i)||Tiun − x∗||2
≤ αn,i||xn − x∗||2 + (1− αn,i)||un − x∗||2
≤ ||xn − x∗||2 − (1− αn,i)||un − zn||2

+ 2λn(1− αn,i)||un − zn||||Bzn −Bx∗||.
This implies that

(1− αn,i)||un − zn||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2
+ 2λn(1− αn,i)||un − zn||||Bzn −Bx∗||

≤ ||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)
+ 2λn(1− αn,i)||un − zn||||Bzn −Bx∗||

Since 0 ≤ αn,i ≤ di < 1, we have lim
n→∞

||un − zn|| = 0. Consequently,

||xn − Tixn|| ≤ ||xn − Tiun||+ ||Tiun − Tixn||
≤ ||xn − Tiun||+ ||un − xn||
≤ ||xn − Tiun||+ ||un − zn||+ ||zn − xn||.
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Since lim
n→∞

||xn − zn|| = 0, lim
n→∞

||un − zn|| = 0 and lim
n→∞

||xn − Tiun|| = 0, we

have that lim
n→∞

||xn − Tixn|| = 0, i = 1, 2, ... Now, by lim
n→∞

||xn − z|| = 0 and

lim
n→∞

||xn − Tixn|| = 0, i = 1, 2, ..., we have that z ∈
∞⋂
i=1

F (Ti).

We next show that z ∈ EP . Since zn := Trn(xn − rnAxn), n ≥ 1, we have for
any y ∈ K that

F (zn, y) + 〈Axn, y − zn〉+ 1

rn
〈y − zn, zn − xn〉 ≥ 0.

Furthermore, replacing n by nj in the last inequality and using (A2), we obtain

〈Axnj
, y − znj

〉+ 1

rnj

〈y − znj
, znj

− xnj
〉 ≥ F (y, znj

). (19)

Let zt := ty + (1 − t)z for all t ∈ (0, 1] and y ∈ K. This implies that zt ∈ K.
Then, by (19), we have

〈zt − znj , Azt〉 ≥ 〈zt − znj , Azt〉 − 〈zt − znj , Axnj 〉 −
〈
zt − znj ,

znj − xnj

rnj

〉
+ F (zt, znj )

= 〈zt − znj , Azt −Aznj 〉+ 〈zt − znj , Aznj −Axnj 〉

−
〈
zt − znj ,

znj − xnj

rnj

〉
+ F (zt, znj ).

Since ||xnj − znj || → 0, j → ∞, we obtain ||Axnj − Aznj || → 0, j → ∞.
Furthermore, by the monotonicity of A, we obtain 〈zt − znj , Azt − Aznj 〉 ≥ 0.
Then, by (A4) we obtain

〈zt − z,Azt〉 ≥ F (zt, z), j → ∞. (20)

Using (A1), (A4) and (20) we also obtain

0 = F (zt, zt) ≤ tF (zt, y) + (1− t)F (zt, z)

≤ tF (zt, y) + (1− t)〈zt − z,Azt〉
= tF (zt, y) + (1− t)t〈y − z,Azt〉

and hence

0 ≤ F (zt, y) + (1− t)〈y − z,Azt〉.
Letting t → 0, we have, for each y ∈ C,

0 ≤ F (z, y) + 〈y − z,Az〉. (21)

This implies that z ∈ EP .

Following the line of arguments of Theorem 3.1, page 346-347 of [10], we can

show that z ∈ V I(K,B). Therefore, z ∈
∞⋂
i=1

F (Ti)
⋂
EP

⋂
V I(K,B).

Noting that xn = PCnx0, we have by (6) that

〈x0 − xn, y − xn〉 ≤ 0,
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for all y ∈ Cn. Since F ⊂ Cn, we obtain from the above inequality that

〈x0 − z, y − z〉 ≤ 0,

for all y ∈ F . By (6), we conclude that z = PFx0. This completes the proof. ¤

Corollary 2. Let K be a closed convex nonempty subset of a real Hilbert space
H. Let F be a bi-function from K × K satisfying (A1) − (A4) and for each
i = 1, 2, ..., let Ti : K → K be a nonexpansive mapping. Let S be a k-strictly

pseudocontractive map of K into H. Suppose F :=
∞⋂
i=1

F (Ti)
⋂
EP (F )

⋂
F (S) 6=

∅. Let {zn}∞n=1, {yn,i}∞n=1 (i = 1, 2, ...) and {xn}∞n=0 be generated by x0 ∈ K,





C1,i = K, C1 =
∞⋂
i=1

C1,i

x1 = PC1x0

F (zn, y) +
1
rn
〈y − zn, zn − xn〉 ≥ 0 ∀y ∈ K, n ≥ 1

un = PK((1− λn)zn + λnSzn)
yn,i = αn,ixn + (1− αn,i)Tiun, n ≥ 1
Cn+1,i = {z ∈ Cn,i : ||yn,i − z|| ≤ ||xn − z||}, n ≥ 1

Cn+1 =
∞⋂
i=1

Cn+1,i

xn+1 = PCn+1x0, n ≥ 1.

Assume that {αn,i}∞n=1 ⊂ [0, 1) (i = 1, 2, ...), {rn}∞n=1 ⊂ (0,∞) and {λn}∞n=1 ⊂
[0, 1− k] satisfy

lim inf
n→∞

rn > 0, 0 < c ≤ λn ≤ f < 1− k, 0 ≤ αn,i ≤ di < 1.

Then, {xn}∞n=0 converges strongly to PFx0.

Proof. Let B := I −S, where S is k-strictly pseudocontractive map. Then, B is
1−k
2 inverse-strongly monotone. Furthermore, putting A ≡ 0 in Theorem 1, we

obtain the desired result. ¤

Corollary 3. Let K be a closed convex nonempty subset of a real Hilbert space
H. Let A be an α-inverse-strongly monotone mapping of K into H, B be an
β-inverse-strongly monotone mapping of K into H and for each i = 1, 2, ..., let
Ti : K → K be a nonexpansive mapping. Suppose

F :=
∞⋂
i=1

F (Ti)
⋂
V I(K,A)

⋂
V I(K,B) 6= ∅. Let {zn}∞n=1, {yn,i}∞n=1 (i = 1, 2, . . . )
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and {xn}∞n=0 be generated by x0 ∈ K,




C1,i = K, C1 =
∞⋂
i=1

C1,i

x1 = PC1x0

zn = PK(xn − rnAxn), n ≥ 1
un = PK(zn − λnBzn), n ≥ 1
yn,i = αn,ixn + (1− αn,i)Tiun, n ≥ 1
Cn+1,i = {z ∈ Cn,i : ||yn,i − z|| ≤ ||xn − z||}, n ≥ 1

Cn+1 =
∞⋂
i=1

Cn+1,i

xn+1 = PCn+1x0, n ≥ 1.

Assume that {αn,i}∞n=1 ⊂ [0, 1) (i = 1, 2, ...), {rn}∞n=1 ⊂ [0, 2α] and
{λn}∞n=1 ⊂ [0, 2β] satisfy

0 < a ≤ rn ≤ b < 2α, 0 < c ≤ λn ≤ f < 2β, 0 ≤ αn,i ≤ di < 1.

Then, {xn}∞n=0 converges strongly to PFx0.

Proof. Taking F (x, y) = 0, ∀x, y ∈ K in Theorem 1, we have

〈Axn, y − zn〉+ 1

rn
〈y − zn, zn − xn〉 ≥ 0 ∀y ∈ K, ∀n ≥ 1.

Thus
〈y − zn, xn − rnAxn − zn〉 ≤ 0 ∀y ∈ K, ∀n ≥ 1.

This implies
PK(xn − rnAxn) = zn, ∀n ≥ 1.

Hence, the desired conclusion follows from Theorem 1. ¤
Corollary 4. Let K be a closed convex nonempty subset of a real Hilbert space
H. Let B be an β-inverse-strongly monotone mapping of K into H. For each
i = 1, 2, ..., let Ti : K → K be a nonexpansive mapping. Suppose
∞⋂
i=1

F (Ti)
⋂
V I(K,B) 6= ∅. Let {zn}∞n=1, {yn,i}∞n=1 (i = 1, 2, ...) and {xn}∞n=0 be

generated by x0 ∈ K,




C1,i = K, C1 =
∞⋂
i=1

C1,i

x1 = PC1x0

un = PK(xn − λnBxn), n ≥ 1
yn,i = αn,ixn + (1− αn,i)Tiun, n ≥ 1
Cn+1,i = {z ∈ Cn,i : ||yn,i − z|| ≤ ||xn − z||}, n ≥ 1

Cn+1 =
∞⋂
i=1

Cn+1,i

xn+1 = PCn+1x0, n ≥ 1.

Assume that {αn,i}∞n=1 ⊂ [0, 1) (i = 1, 2, ...) and {λn}∞n=1 ⊂ [0, 2β] satisfy

0 < c ≤ λn ≤ f < 2β, 0 ≤ αn,i ≤ di < 1.
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Then, {xn}∞n=0 converges strongly to PFx0.

Proof. Taking F (x, y) = 0, ∀x, y ∈ K, A ≡ 0 and rn = 1 in Theorem 1, we have
the desired conclusion from Theorem 1. ¤
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