Apoptotic Effect of Co-Treatment with Valproic Acid and HS-1200 on Human Osteosarcoma Cells

Valproic acid와 HS-1200의 병용처리가 사람골육종세포에 미치는 세포자멸사 효과에 대한 연구

  • Kim, Duck-Han (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Lee, Kee-Hyun (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, In-Ryoung (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kwak, Hyun-Ho (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Park, Bong-Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Jeong, Sung-Hee (Department of Oral Medicine, School of Dentistry, Pusan National University) ;
  • Ko, Myung-Yun (Department of Oral Medicine, School of Dentistry, Pusan National University) ;
  • Ahn, Yong-Woo (Department of Oral Medicine, School of Dentistry, Pusan National University)
  • 김덕한 (부산대학교 치의학전문대학원 구강해부학교실) ;
  • 이기현 (부산대학교 치의학전문대학원 구강해부학교실) ;
  • 김인령 (부산대학교 치의학전문대학원 구강해부학교실) ;
  • 곽현호 (부산대학교 치의학전문대학원 구강해부학교실) ;
  • 박봉수 (부산대학교 치의학전문대학원 구강해부학교실) ;
  • 정성희 (부산대학교 치의학전문대학원 구강내과학교실) ;
  • 고명연 (부산대학교 치의학전문대학원 구강내과학교실) ;
  • 안용우 (부산대학교 치의학전문대학원 구강내과학교실)
  • Received : 2010.06.15
  • Accepted : 2010.07.20
  • Published : 2010.09.30

Abstract

Valproic acid (VPA) is a well-known anticonvulsive agent and has been used in the treatment of epilepsy for almost 30 years. VPA emerged in 1997 as an antineoplastic agent as well, when findings indicated the substance inhibited proliferation and induced differentiation of primitive neuroectocdermal tumor cells in vivo (Cinatl et al., 1997). Antitmor activity of VPA is associated with its targeting histone deacetylases. Bile acids and their synthetic derivatives induced apoptosis in various kinds of cancer cells and anticancer effects. It has been reported that the synthetic chenodeoxycholic acid (CDCA) derivatives showed apoptosis-inducing activity on various cancer cells in vitro. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with the histone deacetylases inhibitor, VPA and a CDCA derivative, HS-1200 on human osteosarcoma (HOS) cells. Cell viability was evaluated by trypan-blue exclusion. Induction and augmentation of apoptosis were confirmed by Hoechst staining, flow cytometry (DNA hypoploidy and MMP change), Westen blot analysis and immunofluorescent staining. In this study, HOS cells co-treated with VPA and HS-1200 showed several lines of apoptotic manifestation such as nuclear condensations, the reduction of MMP, the decrease of DNA content, the release of cytochrome c into cytosol, the translocation of AIF onto nuclei, and activation of caspase-7, caspase-3 and PARP whereas each single treated HOS cells did not. Although the single treatment of 1 mM VPA or $25\;{\mu}M$ HS-1200 for 48 h did not induce apoptosis, the co-treatment of them induced prominently apoptosis. Therefore our data provide the possibility that combination therapy of VPA and HS-1200 could be considered as a novel therapeutic strategy for human osteosarcoma.

Valproic acid(VPA)는 아주 잘 알려진 항경련제로서, 30년 동안 간질치료제로서 사용되어져 왔다. VPA는 1997년에 최초로 원시 신경외배엽성 암세포의 증식 억제와 분화를 유도하는 항암제의 효능이 밝혀졌다. 그리고 VPA의 항암효과는 히스톤탈 아세틸화효소억제제의 기전에 기인한다고 규명되었다. 담즙산과 합성담즙산유도체가 여러 종류의 암세포에 세포자멸사(apoptosis)를 유도하며, 항암효과가 있다고 알려져 있다. 또한 합성 chenodeoxycholic acid(CDCA) 유도체가 여러 가지 암세포에 유도한 세포자멸사 연구들이 보고되어져 왔다. 본 연구는 히스톤탈아세틸화효소억제제인 VPA와 합성 CDCA 유도체인 HS-1200의 병용처리가 사람골육종세포에 효과적인 상승 세포자멸사 효과가 있는지를 알기 위해서 수행되었다. VPA과 HS-1200의 병용처리가 단독처리에 비해서 효과적인 세포생존율 감소가 있는지 확인하기 위해서 trypan-blue법을 시행하였고, 세포자멸사의 유도와 증가를 확인하기 위해서 Hoechst 염색법, flow cytometry(DNA hypoploidy와 MMP 측정), Western bot 분석법 그리고, 면역형광염색법을 수행하였다. 병용처리 된 사람골육종세포는 단독처리 된 사람골육종세포에서 거의 관찰할 수 없었던 많은 핵 응축, DNA 조각남, 사립체막 전위와 DNA 양의 감소, cytochrome c의 세포질로의 유리, AIF의 핵으로의 이동, caspase-7, caspase-3 그리고 PARP의 파괴와 같은 세포자멸사 증거를 보였다. 48시간 동안 1 mM의 VPA와 $25\;{\mu}M$ HS-1200을 각기 단독처리 한 결과에서는 세포자멸사를 유도 못했으나, 병용처리한 결과에는 아주 탁월한 세포자멸사의 유도를 보였다. 이러한 병용처리 결과는 사람골육종의 새로운 치료적 전략으로 응용될 수 있다고 생각한다.

Keywords

References

  1. Marks PA, Rifkind RA. Erythroleukemic differentiation. Annu Rev Biochem 1978;47:419-448. https://doi.org/10.1146/annurev.bi.47.070178.002223
  2. Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, Moon EJ, Kim HS, Lee SK, Chung HY, Kim CW, Kim KW. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 2001;7:437-443. https://doi.org/10.1038/86507
  3. Kwon HJ, Kim MS, Kim MJ, Nakajima H, Kim KW. Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int J Cancer 2002;97:290-296. https://doi.org/10.1002/ijc.1602
  4. Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV and Castronovo V. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 2002;21:427-436. https://doi.org/10.1038/sj.onc.1205108
  5. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: induces of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000;92:1210-1216. https://doi.org/10.1093/jnci/92.15.1210
  6. De Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737-749. https://doi.org/10.1042/BJ20021321
  7. Cinatl J Jr, Cinatl J, Driever PH, Kotchetkov R, Pouckova P, Kornhuber B, Schwabe D. Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs 1997;8:958- 963. https://doi.org/10.1097/00001813-199711000-00007
  8. Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 2004;64:1079-1086. https://doi.org/10.1158/0008-5472.CAN-03-0799
  9. Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Gottlicher M. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 2003;22:3411-3420. https://doi.org/10.1093/emboj/cdg315
  10. Blaheta RA, Cinatl J Jr. Anti-tumor mechanisms of valproate: a novel role for an old drug. Med Res Rev 2002;22:492-511. https://doi.org/10.1002/med.10017
  11. Cinatl J Jr, Kotchetkov R, Blaheta R, Driever PH, Vogel JU, Cinatl J. Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: enhancement by combination with interferon-alpha. Int J Oncol 2002;20:97-106.
  12. Blake J, Roberts PJ, Faubion WA, Kominami E, Gores GJ. Cystatin A expression reduces bile salt-induced apoptosis in a rat hepatoma cell line. Am J Physiol 1988;275:723-730.
  13. Martinez JD, Stratagoules ED, LaRue JM, Powell AA, Gause PR, Craven MT, Payne CM, Powell MB, Gerner EW, Earnest DL. Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr Cancer 1998;31:111-118. https://doi.org/10.1080/01635589809514689
  14. Im EO, Lee S, Suh H, Kim KW, Bae YT, Kim ND. A novel ursodeoxycholic acid derivative induces apoptosis in human MCF-7 breast cancer cells. Pharm Pharmacol Commun 1999;5:293-298. https://doi.org/10.1211/146080899128734875
  15. Im EO, Choi YH, Paik KJ, Suh H, Jin Y, Kim KW, Yoo YH, Kim ND. Novel bile acid derivatives induce apoptosis via a p53-independent pathway in human breast carcinoma cells. Cancer Lett 2001;163:83-93. https://doi.org/10.1016/S0304-3835(00)00671-6
  16. Choi YH, Im EO, Suh H, Jin Y, Yoo YH, Kim ND. Apoptosis and modulation of cell cycle control by synthetic derivatives of ursodeoxycholic acid and chenodeoxycholic acid in human prostate cancer cells. Cancer Lett 2003;199:157-167. https://doi.org/10.1016/S0304-3835(03)00351-3
  17. Jeong JH, Park JS, Moon B, Kim MC, Kim JK, Lee S, Suh H, Kim ND, Kim JM, Park YC, Yoo YH. Orphan nuclear receptor Nur77 translocates to mitochondria in the early phase of apoptosis induced by synthetic chenodeoxycholic acid derivatives in human stomach cancer cell line SNU-1. Ann N Y Acad Sci 2003;1010:171-177. https://doi.org/10.1196/annals.1299.029
  18. Seo SY, Jun EJ, Jung SM, Kim KH, Lim YJ, Park BS, Kim JK, Lee S, Suh H, Kim ND, Yoo YH. Synthetic chenodeoxycholic acid derivative HS-1200-induced apoptosis of p815 mastocytoma cells is augmented by co-treatment with lactacystin. Anticancer Drugs 2003;14:219-225. https://doi.org/10.1097/00001813-200303000-00005
  19. Park SE, Choi HJ, Yee SB, Chung HY, Suh H, Choi YH, Yoo YH, Kim ND. Synthetic bile acid derivatives inhibit cell proliferation and induce apoptosis in HT-29 human colon cancer cells. Int J Oncol 2004;25:231-236.
  20. Im EO, Choi SH, Suh H, Choi YH, Yoo YH, Kim ND. Synthetic bile acid derivatives induce apoptosis through a c-Jun N-terminal kinase and NFkappaB- dependent process in human cervical carcinoma cells. Cancer Lett 2005;229:49-57. https://doi.org/10.1016/j.canlet.2004.11.055
  21. Kim ND, Im E, Yoo YH, Choi YH. Modulation of the cell cycle and induction of apoptosis in human cancer cells by synthetic bile acids. Curr Cancer Drug Targets 2006;6:681-689. https://doi.org/10.2174/156800906779010236
  22. Williams GT. Programmed cell death: Apoptosis and oncogenesis. Cell 1991;65:1097-1098. https://doi.org/10.1016/0092-8674(91)90002-G
  23. Yuan J. Evolutionary conservation of a genetic pathway of programmed cell death. J Cell Biochem 1996;60:4-11. https://doi.org/10.1002/(SICI)1097-4644(19960101)60:1<4::AID-JCB2>3.0.CO;2-1
  24. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441-446. https://doi.org/10.1038/17135
  25. Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 1999;6: 303-313. https://doi.org/10.1038/sj.cdd.4400505
  26. Lu Y, Yagi T. Apoptosis of human tumor cells by chemotherapeutic anthracyclines is enhanced by Bax overexpression. J Radiat Res(Tokyo) 1999;40:263-272. https://doi.org/10.1269/jrr.40.263
  27. Fellenberg J, Mau H, Nedel S, Ewerbeck V, Debatin KM. Drug-induced apoptosis in osteosarcoma cell lines is mediated by caspase activation independent of CD95-receptor/ligand interaction. J Orthop Res 2000;18:10-17. https://doi.org/10.1002/jor.1100180103
  28. Seki K, Yoshikawa H, Shiiki K, Hamada Y, Akamatsu N, Tasaka K. Cisplatin (CDDP) specifically induces apoptosis via sequential activation of caspase-8, 3 and -6 in osteosarcoma. Cancer Chemother Pharmacol 2000;45:199-206. https://doi.org/10.1007/s002800050030
  29. Kieslich M, Schwabe D, Cinatl J Jr, Driever PH. Increase of fetal hemoglobin synthesis indicating differentiation induction in children receiving valproic acid. Pediatr Hematol Oncol 2003;20:15-22. https://doi.org/10.1080/08880010390158496
  30. Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 2005;4:1912-1922. https://doi.org/10.1158/1535-7163.MCT-05-0184
  31. Takai N, Desmond JC, Kumagai T, Gui D, Said JW, Whittaker S, Miyakawa I, Koeffler HP. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 2004;10:1141-1149 https://doi.org/10.1158/1078-0432.CCR-03-0100
  32. Witt O, Schweigerer L, Driever PH, Wolff J, Pekrun A. Valproic acid treatment of glioblastoma multiforme in a child. Pediatr Blood Cancer 2004;43:181. https://doi.org/10.1002/pbc.20083
  33. Warrell RP Jr, He LZ, Richon V, Calleja E, Pandolfi PP. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998;90: 1621-1625. https://doi.org/10.1093/jnci/90.21.1621
  34. Graziani G, Tentori L, Portarena I, Vergati M, Navarra P. Valproic acid increases the stimulatory effect of estrogens on proliferation of human endometrial adenocarcinoma cells. Endocrinology 2003;144:2822-2828 https://doi.org/10.1210/en.2002-0180
  35. Mongan NP, Gudas LJ. Valproic acid, in combination with all-trans retinoic acid and 5-aza-2'- deoxycytidine, restores expression of silenced RARbeta2 in breast cancer cells. Mol Cancer Ther 2005;4:477-486.
  36. Choi YH, Im EO, Suh H, Jin Y, Lee WH, Yoo YH, Kim KW, Kim ND. Apoptotic activity of novel bile acid derivatives in human leukemic T cells through the activation of caspases. Int J Oncol 2001;18: 979-984.
  37. Yoon HS, Rho JH, Yoo KW, Park WC, Rho SH, Choi YH, Suh H, Kim ND, Yoo KS, Yoo YH. Synthetic bile acid derivatives induce nonapoptotic death of human retinal pigment epithelial cells. Curr Eye Res 2001;22:367-374. https://doi.org/10.1076/ceyr.22.5.367.5499
  38. Kim GC, Her YS, Park JH, Moon YS, Yoo YH, Shin SH, Park BS. Synthetic Bile Acid Derivative HS-1200-induced Apoptosis of Human Osteosarcoma Cells. The Korean J Anat 2004;37:449-457.
  39. Baek CJ, Min JH, Moon SH, Kim IR, Lee SE, Kim DH, Kim GC, Kwak HH, Park BS. Synthetic Chenodeoxycholic Acid Derivative HS-1200-induced Apoptosis of Human Melanoma Cells. Korean J Phys Anthropol 2007;20:363-373. https://doi.org/10.11637/kjpa.2007.20.4.363
  40. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997;18:44-51. https://doi.org/10.1016/S0167-5699(97)80014-X
  41. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-1312. https://doi.org/10.1126/science.281.5381.1309
  42. Golab J, Stoklosa T, Czajka A, Dabrowska A, Jakobisiak M, Zagozdzon R, Wojcik C, Marczak M, Wilk S. Synergistic antitumor effects of a selective proteasome inhibitor and TNF in mice. Anticancer Res 2000;20:1717-1721.
  43. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. Proteasome inhibitorinduced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 2000;75:2288-2297.
  44. Marshansky V, Wang X, Bertrand R, Luo H, Duguid W, Chinnadurai G, Kanaan N, Vu MD, Wu J. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol 2001;166: 3130-3142. https://doi.org/10.4049/jimmunol.166.5.3130
  45. Dauglas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G. Mitochondrio -nuclear translocation of AIF in apoptosis and necrosis. FASEB J 2000;14:729-739. https://doi.org/10.1096/fasebj.14.5.729
  46. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423-432. https://doi.org/10.1016/S1097-2765(02)00442-2