혐기소화액에서 분리한 아질산 산화세균의 생장특성

Growth Characteristics of Nitrite Oxidizing Bacteria Isolated from Anaerobic Digestion Liquor

  • 장현민 (가톨릭대학교 생명환경공학부 환경공학) ;
  • 장재은 (가톨릭대학교 생명환경공학부 환경공학) ;
  • 김영준 (가톨릭대학교 생명환경공학부 환경공학)
  • Jang, Hyun-Min (School of Biotechnology and Environmental Engineering, The Catholic University) ;
  • Jang, Jae-Eun (School of Biotechnology and Environmental Engineering, The Catholic University) ;
  • Kim, Young-Jun (School of Biotechnology and Environmental Engineering, The Catholic University)
  • 투고 : 2010.03.09
  • 심사 : 2010.03.23
  • 발행 : 2010.03.31

초록

음식물류폐기물 혐기소화액으로부터 아질산성 질소를 산화하는 세균 2종, NOB1 과 NOB2를 분리하여 이들의 아질산성 질소산화능 및 온도, pH, 용존산소의 농도에 따른 생장특성을 조사하였다. 분리된 두 균주 모두 최적의 생장조건은 pH 7.0과 배양온도 $35^{\circ}C$로 나타났으며 용존산소의 농도가 높을수록 생장율이 상승하는 것으로 나타났다. 두 균주의 생장을 억제하는 요인으로는 pH와 용존산소가 효과적인 것으로 나타났는데, pH 5.0 및 9.0에서, 용존산소 1.0 ppm 이하에서 생장율이 현저히 감소하는 결과를 보여주었다. 특히, 아질산성 질소의 산화능력은 1.0 ppm 이하의 농도에서 1.0 ppm 이상에서 보다 약 50% 감소하는 것으로 나타났다. 두 균주의 생성율 및 질소산화능은 NOB2가 NOB1에 비해 약 2배 이상 높은 것으로 조사되었다.

Two nitrite oxidizing bacteria, NOB1 and NOB2, were isolated from anaerobic digester liquer of food wastewater and analyzed for their growth characteristics and the ability to oxidize nitrite under different temperature, pH, and DO( dissolved oxygen) concentrations. Both of the isolated strains have shown the best growth at pH 7.0 and at $35^{\circ}C$, and also shown higher growth rate with the increasing dissolved oxygen concentrations. As the factors to restrict the growth of these strains, parameters such as pH and DO were found to be effective ones, by increasing (up to 9.0) or decreasing pH (up to 5.0), or lowing DO below 1.0 ppm. Especially, the ability to oxidize nitrite in both strains was about 50% lower in below 1.0 ppm of DO than above of 1.0 ppm. NOB2 was found to be two times greater in both the growth rate and the nitrite-oxidizing ability than NOB1.

키워드

참고문헌

  1. 김현아, 이경하, 이대성, "SHARON-ANAMMOX 공정 공정개요, 디자인, 경제성검토", DICER TechInfo Part I, 11, pp. 337-351 (2007).
  2. Hellinga C, Schellen A AJC, Mulder, JW, van Loosdrechet, MCM, Heijnen JJ., "The SHARON process, an innovative method for nitrogen removal from ammonia rich wastewater", Water Sci Technol., 37, pp. 135-142 (1998).
  3. Shiha B, Annachhatre AP., "Partial nitrification-operational parameters and microorganisms involved", Rev Enviorn Sci Biotechnol., 6, pp. 285-313 (2009).
  4. Mulder, A., van de Graaf, A.A., Robertson, L.A. and Kuenen, J.G., "Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor.", FEMS Microbiol Ecol, 16, pp. 177-184 (1995). https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  5. Strous, M., van Gerven, E., Zheng, P., Kuenen, J.G. and Jetten, M.S.M., "Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(ANAMMOX) process in different reactor configurations", Water Res., 31, pp.1955-1962 (1997). https://doi.org/10.1016/S0043-1354(97)00055-9
  6. Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J.G., Jetten, MSM. and Strous, M., "New concepts of microbial treatment processes for he nitrogen removal in wastewater", FEMS Microbiol. Rev., 27, pp. 481-491 (2003). https://doi.org/10.1016/S0168-6445(03)00039-1
  7. Anthonisen AC, Loehr RC, prakasam TBS, Srinath EG., "Inhibition or nitrification by ammonia and nitrous acid.". J water Pollut Control Federation, 48, p. 835 (1976).
  8. Randall CW, Buth D., "Nitrite build-up in activated sludge resulting from temperature effects", J Water Pollut Control Federation, 56, p. 1039 (1984).
  9. Garrido JM, Van Benthum WAJ, Van Loosdrecht MCM, Heijnen JJ., "Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor.", Biotechnol Bioeng., 53, p. 168 (1997). https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
  10. Bernet N, Peng D, Delgenes JP., MoIetta R, "Nitrification at low oxygen concentration in biofilm reactor.", J. Environ. Eng., 127, p. 266 (2001). https://doi.org/10.1061/(ASCE)0733-9372(2001)127:3(266)