연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell

  • 김정구 (금오공과대학교 토목환경공학부) ;
  • 정연구 (금오공과대학교 토목환경공학부) ;
  • 박송인 (전남대학교 환경공학과)
  • Kim, Jeong-Gu (Department of Civil and Environmental Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Yeon-Koo (Department of Civil and Environmental Engineering, Kumoh National Institute of Technology) ;
  • Park, Song-In (Department of Environmental Engineering, Chonnam National University)
  • 투고 : 2010.02.04
  • 심사 : 2010.03.27
  • 발행 : 2010.03.31

초록

양성자 교환막 미생물연료전지(PEM-MFC)의 경우 양극의 표면적을 기준으로 유기물 제거능력을 산출하면 유기물 부하에 관계없이 $3.0gCOD/m^2$ 수준으로 나타났다. 또 안정적인 전압이 관찰된 시기의 쿨롱 효율은 22.4~23.4 %로 높지 않은 수준이었다. 양성자 교환막은 양성자뿐만 아니라 초산도 통과시키는 것으로 확인되었다. 양성자 교환막을 사용하지 않은 상향류식 미생물연료전지(ML-MFC)의 경우 다공성 RVC 전극을 사용한 관계로 전극의 외부면적당 유기물 제거능력은 $9.3{\sim}10.1gCOD/m^2{\cdot}d$로 나타났다. 이는 양성자 교환막을 사용한 경우에 비하여 3배 정도 높은 수준이다. 그러나 RVC 양극의 비표면적 차이에 따른 유기물 제거 능력 차이는 크지 않았다. ML-MFC의 경우 전기 발생이 안정적이지 못하였으며, 쿨롱 효율도 3.6~3.7 %로 매우 낮은 수준이었다. 전기 발생량이 안정적이지 못한 것은 음극에 성장한 미생물의 영향으로 판단된다. 이를 해결하기 위해 음극부의 공기주입량을 증가시키면 일시적으로 전기 발생이 증가하였으나 오래 지속되지 못하였다.

Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.

키워드

참고문헌

  1. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K., "Microbial fuel cells; methodology and technology", Environ. Sci. & Technol., 40(17), pp. 5181-5192 (2006). https://doi.org/10.1021/es0605016
  2. Kim, I.S., Chae, K.J. and Choi, M.J., Verstraete, W., "Microbial fuel cells, Recent advances, bacterial communities and application beyond electricity generation", Environmental Engineering Research, 13(2), pp. 51-65 (2008). https://doi.org/10.4491/eer.2008.13.2.051
  3. Du, Z., Li, H. and Gu, T., "A state of the art review on microbial fuel cells, a promising technology for wastewater treatment and bioenergy", Biotechnology advances, 25, pp. 464-482 (2007). https://doi.org/10.1016/j.biotechadv.2007.05.004
  4. Rismani-Yazdi, H., Carver, S.M., Christy, A.D. and Tuovinen, O.H., "Cathodic limitation in microbial fuel cells. an overview", J. of power sources, 180, pp. 683-694 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.074
  5. Min. B., Kim, J.R., Oh, S.E., Regan, J.M. and Logan, B.E., "Electricity generation from animal wastewater using microbial fuel cells", Water Research, 39(20), pp. 4961-4968 (2005). https://doi.org/10.1016/j.watres.2005.09.039
  6. Clauwaert, P., Rabaey, K., Aelterman, P., Schamphelaire, L.D., Pham, T.H., Boeckx, P., Boon, N. and Verstraete, W., "Biological denitrification in microbial fuel cells", Environ. Sci. & Technol., 41, pp. 3354-3360 (2007). https://doi.org/10.1021/es062580r
  7. Mu, Y., Rabaey, K., Rozendal, R.A., Yuan, Z. and Keller, J., "Decolorization of Azo dyes in bioelectrochemical systems", Environ. Sci. & Technol., 43, pp. 5137-5143 (2009). https://doi.org/10.1021/es900057f
  8. Mu, Y., Rozendal, R.A., Rabaey, K. and Keller, J., "Nitrobenzene removal in bioelectrochemical systems", Environ. Sci. & Technol., 43, pp. 8690-8695 (2009). https://doi.org/10.1021/es9020266
  9. Rabaey, K., Van De Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., Schamphelaire, L., Pham, H.T., Vermeulen, J., Verhaege, M., Lens, P. and Verstraete, W., "Microbial fuel cells for sulfide removal", Environ. Sci & Technol., 40, pp. 5218-5224 (2006). https://doi.org/10.1021/es060382u
  10. Owens, W.D., Stuckey, J., Healy, T. and McCarty, P., "Bioassay for monitoring biochemical methane potential and anaerobic toxicity", Water Research, 3, pp. 485-492 (1979).
  11. Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S. and Kim, B.H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell", Process Biochemistry, 39, pp. 1007-1012 (2004). https://doi.org/10.1016/S0032-9592(03)00203-6
  12. Friedrich, J.M., Ponce-de-Leon, C., Reade, G.W. and Walsh, F.C., "Reticulated vitreous carbon as an electrode material", J. of Electroanalytical Chemistry, 561, pp. 203-217 (2004). https://doi.org/10.1016/j.jelechem.2003.07.019
  13. American Public Health Association. "Standard methods for the examination of water and wastewater", 21th ed. Washington, DC. (2005).
  14. Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S. and Kim. I.S., "Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells", Energy and Fuels, 22(1), pp. 169-176 (2008). https://doi.org/10.1021/ef700308u
  15. He, Z., Minteer, S.D. and Angenent, L.T., "Electricity generation from artificial wastewater using an upflow microbial fuel cell", Environ. Sci. & Technol., 39, pp. 5262-5267 (2005). https://doi.org/10.1021/es0502876
  16. Moon, H., Chang, I.S., Jang, J.K. and Kim, B.H., "Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation", Biochemical Engineering Journal, 27, pp. 59-65 (2005). https://doi.org/10.1016/j.bej.2005.02.010