PERIODIC SOLUTIONS OF VOLTERRA EQUATIONS

Sung Kyu Choi*, Namuip Koo**, Yun Hei Yeo***, and ChanMi Yun****

Abstract

We study the existence of periodic solutions of Volterra equations by using the limiting equations and contraction mappings.

1. Introduction

Miller [7] studied forced oscillations in a nonlinear system of Volterra integral equations of the form

$$
\begin{align*}
x_{1}(t)=f_{1}(t) & - \\
& \int_{0}^{t} a_{1}(t-s) g_{1}\left(s, x_{1}(s), x_{2}(s)\right) d s \\
& -\int_{0}^{t} a_{2}(t-s) g_{2}\left(s, x_{1}(s), x_{2}(s)\right) d s \tag{1.1}\\
x_{2}(t)=f_{2}(t)- & \int_{0}^{t} a_{2}(t-s) g_{1}\left(s, x_{1}(s), x_{2}(s)\right) d s \\
& -\int_{0}^{t} a_{1}(t-s) g_{2}\left(s, x_{1}(s), x_{2}(s)\right) d s
\end{align*}
$$

where the functions $f_{i}(t)$ and $g_{i}\left(t, x_{1}, x_{2}\right), i=1,2$, are asymptotically almost periodic in t. (1.1) arises in a natural way from the initial boundary

[^0]value problem:
\[

$$
\begin{align*}
u_{t} & =u_{x x}, & t>0, & 0<x<\pi, \\
u(0, x) & =F(x), & & 0<x<\pi, \\
u_{x}(t, 0) & =g_{1}(t, u(t, 0), u(t, \pi)), & & t>0, \tag{1.2}\\
u_{x}(t, \pi) & =-g_{2}(t, u(t, 0), u(t, \pi), & & t>0 .
\end{align*}
$$
\]

The boundary conditions in this diffusion problem (1.2) are motivated by the theory of superfluidity of liquid helium [7]. Also, see [6].

Burton and Furumochi [1] studied the existence of periodic solutions of

$$
\begin{equation*}
x(t)=a(t)-\int_{0}^{t} D(t, s, x(s)) d s, t \in \mathbb{R}^{+}=[0, \infty), \tag{1.3}
\end{equation*}
$$

and its limiting equation

$$
\begin{equation*}
x(t)=p(t)-\int_{-\infty}^{t} P(t, s, x(s)) d s, t \in \mathbb{R}=(-\infty, \infty) \tag{1.4}
\end{equation*}
$$

by using techniques on limiting equations, Liapunov functions, the theory of minimal solutions, and contraction mappings. Also, they investigated the existence of almost periodic solutions of (1.3) and (1.4) in [3].

Furumochi [5] obtained discrete analogues of the results in [1], that is, he obtained the existence of periodic solution of the Volterra difference equations

$$
\begin{equation*}
x(n+1)=a(n)-\sum_{k=0}^{n} D(n, k, x(k)), n \in \mathbb{Z}^{+}, \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
x(n+1)=p(n)-\sum_{-\infty}^{n} P(n, k, x(k)), n \in \mathbb{Z} \tag{1.6}
\end{equation*}
$$

For the asymptotic property of linear Volterra difference equations, see [4].

In this paper, we investigate the existence of bounded periodic solutions of (1.3) and (1.4). This study complements [1].

2. Main Results

We are concerned with systems of Volterra equations

$$
\begin{align*}
& x(t)=a(t)-\int_{0}^{t} D(t, s, x(s)) d s, t \in \mathbb{R}^{+}=[0, \infty), \tag{2.1}\\
& x(t)=a(t)-\int_{-\infty}^{t} D(t, s, x(s)) d s, t \in \mathbb{R}=(-\infty, \infty), \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
x(t)=p(t)-\int_{-\infty}^{t} P(t, s, x(s)) d s, t \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

where $a: \mathbb{R} \rightarrow \mathbb{R}^{n}, p: \mathbb{R} \rightarrow \mathbb{R}^{n}, D: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, P:$ $\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are continuous, and

$$
\begin{equation*}
p(t+T)=p(t), \quad q(t):=a(t)-p(t) \rightarrow 0 \text { as } t \rightarrow \infty \tag{2.4}
\end{equation*}
$$

where $T>0$ is a constant,

$$
\begin{equation*}
P(t+T, s+T, x)=P(t, s, x), \quad Q(t, s, x):=D(t, s, x)-P(t, s, x) \tag{2.5}
\end{equation*}
$$

and for any $J>0$ there are continuous functions $P_{J}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{+}$and $Q_{J}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{aligned}
P_{J}(t+T, s+T) & =P_{J}(t, s) \text { if } t, s \in \mathbb{R} \\
|P(t, s, x)| & \leq P_{J}(t, s) \text { if } t, s \in \mathbb{R} \text { and }|x| \leq J
\end{aligned}
$$

where $|\cdot|$ denotes the Euclidean norm of \mathbb{R}^{n}, and $|Q(t, s, x)| \leq Q_{J}(t, s)$ if $t, s \in \mathbb{R}$ and $|x| \leq J$,

$$
\begin{gather*}
\int_{-\infty}^{t} P_{J}(t+\tau, s) d s \rightarrow 0 \text { uniformly for } t \in \mathbb{R} \text { as } \tau \rightarrow \infty \tag{2.6}\\
\int_{0}^{t} P_{J}(t, s) d s \rightarrow 0 \text { as } t \rightarrow \infty \tag{2.7}
\end{gather*}
$$

or

$$
\begin{equation*}
\int_{-\infty}^{t} Q_{J}(t, s) d s \rightarrow 0 \text { as } t \rightarrow \infty \tag{2.8}
\end{equation*}
$$

and

$$
\int_{-\infty}^{t} Q_{J}(t+\tau, s) d s \rightarrow 0 \text { uniformly for } t \in \mathbb{R} \text { as } \tau \rightarrow \infty
$$

First we obtain a relation between solution of (2.2) and

$$
\begin{equation*}
x(t)=p(t+\sigma)-\int_{-\infty}^{t} P(t+\sigma, s+\sigma, x(s)) d s, t \in \mathbb{R} \tag{2.9}
\end{equation*}
$$

where $0 \leq \sigma<T$.
Theorem 2.1. Under the assumptions (2.4), (2.5), (2.6) and (2.8), we suppose that (2.2) has an \mathbb{R}-bounded solution $x(t)$ with an initial time in \mathbb{R}. Let $\left(s_{k}\right)$ be a sequence in \mathbb{R} with $s_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Then the sequence $\left(x_{k}(t)\right)$ converges to an \mathbb{R}-bounded solution $y(t)$ of (2.9) uniformly on any compact subset of \mathbb{R} as $k \rightarrow \infty$, where $x_{k}(t):=$ $x\left(t+s_{k}\right), t \in \mathbb{R}$.

Proof. Since $x(t)$ is \mathbb{R}-bounded, the $\operatorname{set}\left\{x_{k}(t): t \in \mathbb{R}\right\}$ is uniformly bounded on \mathbb{R}. From (2.4), (2.5), and (2.8) we deduce that $x(t)$ is uniformly continuous on \mathbb{R}. Since $x_{k}(t)$ is obtained by an s_{k}-translation to the left of $x(t)$, the set $\left\{x_{k}(t): t \in \mathbb{R}\right\}$ is equicontinuous. By the Ascoli's theorem, the sequence $\left(x_{k}(t)\right)$ converges to some \mathbb{R}-bounded continuous function $y(t)$ uniformly on any compact subset of \mathbb{R} as $k \rightarrow$ ∞.

Now, we show that $y(t)$ satisfies (2.9) on \mathbb{R}. For any $k \in \mathbb{N}$, let ν_{k} be an integer with $\nu_{k} T \leq s_{k}<\nu_{k+1} T$. Let $\sigma_{k}=s_{k}-\nu_{k} T$. By taking a subsequence if necessary, we may assume that $\left(\sigma_{k}\right)$ converges to some σ with $0 \leq \sigma<T$. From (2.2), we have

$$
\begin{align*}
& x_{k}(t)=x\left(t+s_{k}\right) \\
& =a\left(t+s_{k}\right)-\int_{-\infty}^{t+s_{k}} D\left(t+s_{k}, s, x(s)\right) d s \\
& =p\left(t+\sigma_{k}\right)+q\left(t+s_{k}\right)-\int_{-\infty}^{t+s_{k}} P\left(t+\sigma_{k}, s+\sigma_{k}, x\left(s+s_{k}\right)\right) d s \tag{2.10}\\
& \quad-\int_{-\infty}^{t+s_{k}} Q\left(t+s_{k}, s, x(s)\right) d s .
\end{align*}
$$

Note that $p\left(t+\sigma_{k}\right) \rightarrow p(t+\sigma)$ and $q\left(t+s_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Let $J>0$ be a number with $|x| \leq J$. From (2.6), we obtain that for any $\epsilon>0$ there exists a $\tau>0$ such that

$$
\begin{equation*}
\int_{-\infty}^{t} P_{J}(t+\tau, s) d s<\epsilon, t \in \mathbb{R} \tag{2.11}
\end{equation*}
$$

In view of (2.8) we have

$$
\begin{align*}
\lim \sup _{k \rightarrow \infty} \mid & \int_{-\infty}^{t+s_{k}} Q\left(t+s_{k}, s, x(s)\right) d s \mid \\
& \leq \lim \sup _{k \rightarrow \infty} \int_{-\infty}^{t+s_{k}}\left|Q\left(t+s_{k}, s, x(s)\right)\right| d s \tag{2.12}\\
& =0
\end{align*}
$$

Also,

$$
\begin{aligned}
& \lim \sup _{k \rightarrow \infty} \mid \int_{-\infty}^{t+s_{k}} P\left(t+\sigma_{k}, s+\sigma_{k}, x\left(s+s_{k}\right)\right) d s \\
& \quad-\int_{-\infty}^{t} P(t+\sigma, s+\sigma, y(s)) d s \mid \\
& \leq \lim \sup _{k \rightarrow \infty} \mid \int_{t}^{t+s_{k}}\left[P\left(t+\sigma_{k}, s+\sigma_{k}, x_{k}(s)\right)\right. \\
& \quad-P(t+\sigma, s+\sigma, y(s))] d s \mid \\
& \quad+\lim \sup _{k \rightarrow \infty} \int_{-\infty}^{t} P_{J}\left(t+\sigma_{k}, s+\sigma_{k}\right) d s+\int_{-\infty}^{t} P_{J}(t+\sigma, s+\sigma) d s \\
& <\epsilon+\epsilon=2 \epsilon,
\end{aligned}
$$

by (2.6) and (2.11). Hence it follows from (2.12) and (2.13) that

$$
y(t)=p(t+\sigma)-\int_{-\infty}^{t} P(t+\sigma, s+\sigma, y(s)) d s, t \in \mathbb{R}
$$

by letting $k \rightarrow \infty$ in (2.10). This completes the proof.
Definition 2.2. A function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is called asymptotically T periodic, $T>0$ is a constant, if $f=g+h$, where g is T-periodic, i.e, $g(t+T)=g(t)$ for all $t \in \mathbb{R}$, and $\lim _{t \rightarrow \infty} h(t)=0$.

Theorem 2.3. Suppose that (2.4), (2.5), (2.6) and (2.8). If (2.3) has a unique \mathbb{R}-bounded solution $x_{0}(t)$ on \mathbb{R}, then the following hold:
(i) $x_{0}(t)$ is T-periodic.
(ii) Any \mathbb{R}-bounded solution $x(t)$ of (2.2) with an initial time in \mathbb{R} is asymptotically T-periodic and approaches to $x_{0}(t)$ as $t \rightarrow \infty$.

Proof. (i) Let $x_{1}(t)=x_{0}(t+T), t \in \mathbb{R}$. We show that $x_{1}(t)=x_{0}(t)$ for all $t \in \mathbb{R}$. Since $x_{0}(t)$ is a unique \mathbb{R}-bounded solution of (2.2) on \mathbb{R}, $x_{1}(t)$ is also an \mathbb{R}-bounded solution of (2.2) on \mathbb{R}. From the uniqueness of solutions, we have $x_{1}(t)=x_{0}(t)$ for all $t \in \mathbb{R}$.
(ii) We show that $x(t) \rightarrow x_{0}(t)$ as $t \rightarrow \infty$. Let $x_{k}(t)=x\left(t+s_{k}\right)$ with $s_{k}=k T$. Then, by Theorem 2.1,

$$
x_{k}(t) \rightarrow y(t)
$$

uniformly on any compact subset of \mathbb{R} as $k \rightarrow \infty$, where $y(t)$ is an \mathbb{R} bounded solution of (2.9) with $0 \leq \sigma<T$, and thus is an \mathbb{R}-bounded solution of (2.2) when $\sigma=0$. Also, $y(t)=x_{0}(t)$ from the uniqueness of solutions. Thus $x(t)=x_{0}(t)+\varphi(t)$, where $\lim _{t \rightarrow \infty} \varphi(t)=0$. This implies that $x(t)$ is asymptotically T-periodic. This completes the proof.

Theorem 2.4. [1] Suppose that (2.4), (2.5) and (2.6) with $q(t) \equiv 0$ and $Q(t, s, x) \equiv 0$. Assume that for any $J>0$ there exists a continuous function $L_{J}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
|P(t, s, x)-P(t, s, y)| \leq L_{J}(t, s)|x-y| \tag{2.14}
\end{equation*}
$$

when $t, s \in \mathbb{R}$ and $|x|,|y| \leq J$. Let

$$
\lambda_{J}:=\sup _{t \in \mathbb{R}} \int_{-\infty}^{t} L_{J}(t, s) d s<1
$$

and

$$
\begin{equation*}
\lambda:=\sup _{J>0} \lambda_{J}<1 . \tag{2.15}
\end{equation*}
$$

Then
(i) (2.3) has a unique \mathbb{R}-bounded T-periodic solution on \mathbb{R}.
(ii) Any \mathbb{R}-bounded solution of (2.3) with initial time $t_{0} \in \mathbb{R}$ and bounded continuous initial function $\varphi:\left(-\infty, t_{0}\right) \rightarrow \mathbb{R}^{n}$ approaches to the T-periodic solution.

Consider the linear Volterra equation

$$
\begin{equation*}
x(t)=p(t)-\int_{-\infty}^{t} P(t, s) x(s) d s, t \in \mathbb{R} \tag{2.16}
\end{equation*}
$$

where $p: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $P: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous.
Theorem 2.5. [1] If

$$
\begin{equation*}
b(t):=\int_{-\infty}^{t}|P(t, s)| d s<1, t \in \mathbb{R} \tag{2.17}
\end{equation*}
$$

holds, then for any $t_{0} \in \mathbb{R}$ and any bounded continuous function φ : $\left(-\infty, t_{0}\right) \rightarrow \mathbb{R}^{n}$, the solution $x(t)=x\left(t, t_{0}, \varphi\right)$ of (2.16) satisfies

$$
|x(t)| \leq X(t):=\max \left\{\sup _{t_{0} \leq s \leq t} B(s), \sup _{s \leq t_{0}}|\varphi(s)|,\left|x\left(t_{0}+\right)\right|\right\}, t \geq t_{0}
$$

where

$$
B(s):=\frac{1}{1-b(s)} \sup _{t_{0} \leq u \leq s}|p(u)|, s \geq t_{0} .
$$

Now, we obtain the periodicity and attractivity of solution of the linear equation (2.16).

Definition 2.6. The solution $x(t)$ of (2.16) is said to be globally attractive if

$$
\lim _{t \rightarrow \infty}[x(t)-y(t)]=0
$$

for any solution $y(t)$ of (2.16).
Theorem 2.7. Suppose that $p(t+T)=p(t)$ and $P(t+T, s+T)=$ $P(t, s), t, s \in \mathbb{R}$. In addiction to (2.17), if $b(t)$ is continuous, then (2.16) has a unique \mathbb{R}-bounded solution on \mathbb{R} which is T-periodic and globally attractive.

Proof. In view of Theorem 2.5, the solution $x(t)$ of (2.16) satisfies

$$
|x(t)| \leq X(t), t \geq t_{0}, t_{0} \in \mathbb{R}
$$

that is, $x(t)$ is \mathbb{R}-bounded. From Theorem 2.4, $x(t)$ is T-periodic. Also, $x(t)$ is globally attractive by Theorem 2.4.

In (2.5), we let $Q(t, s, x)=0$. So we consider

$$
\begin{equation*}
x(t)=a(t)-\int_{0}^{t} P(t, s, x(s)) d s, t \in \mathbb{R}^{+} \tag{2.18}
\end{equation*}
$$

where $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{n}$ is bounded continuous and $P: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous.

Theorem 2.8. Suppose that (2.4), (2.5) and (2.6) with $Q(t, s, x) \equiv 0$. Under the assumptions (2.14) and (2.15), the following hold:
(i) (2.18) has a unique \mathbb{R}^{+}-bounded solution $x(t)$ on \mathbb{R}^{+}.
(ii) (2.3) has a unique T-periodic solution $\pi(t)$ on \mathbb{R}.
(iii) $x(t) \rightarrow \pi(t)$ as $t \rightarrow \infty$.

Proof. (i) Let B be the Banach space of all bounded continuous functions $\xi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{n}$ with

$$
\|\xi\|=\sup _{t \geq 0}|\xi(t)|
$$

Define H on B by

$$
(H \xi)(t):=a(t)-\int_{0}^{t} P(t, s, \xi(s)) d s
$$

Then we have

$$
|(H \xi)(t)| \leq|a(t)|+\int_{0}^{t}|P(t, s, \xi(s))| d s
$$

Thus, from (2.6), $H \xi$ is bounded. It follows that $H(B) \subset B$.

We show that H is a contraction. To do this we let $\xi_{1}, \xi_{2} \in H$ with $\left\|\xi_{1}\right\|,\left\|\xi_{2}\right\| \leq J$ for some $J>0$. Then

$$
\begin{aligned}
\left|\left(H \xi_{1}\right)(t)-\left(H \xi_{2}\right)(t)\right| & \leq \int_{0}^{t}\left|P\left(t, s, \xi_{1}(s)\right)-P\left(t, s, \xi_{2}(s)\right)\right| d s \\
& \leq \int_{0}^{t} L_{J}(t, s)\left|\xi_{1}(s)-\xi_{2}(s)\right| d s \\
& \leq \lambda_{J}\left\|\xi_{1}-\xi_{2}\right\| \\
& <\lambda\left\|\xi_{1}-\xi_{2}\right\|
\end{aligned}
$$

by (2.14) and (2.15). This implies that H is a contraction. Hence H has a unique fixed point $x(t)$ of H by the Contraction Mapping Principle.
(ii) Let $x(t)$ denote again \mathbb{R}-extension of the given $x(t)$ obtain by defining

$$
\begin{cases}x(t)=x(0)=a(0) & \text { for } t<0, \\ x(t) & \text { for } 0 \leq t<\infty .\end{cases}
$$

For any $k \in \mathbb{N}$, set $x_{k}(t)=x(t+k T), t \in \mathbb{R}$. In view of Theorem 2.4, (2.3) has a unique T-periodic solution, say $\pi(t)$ in \mathbb{R}. Therefore $\pi(t)$ is a unique \mathbb{R}-bounded solution of (2.3) by Theorem 2.1.
(iii) We can deduce that $x(t)-\pi(t) \rightarrow 0$ as $k \rightarrow \infty$ since we can show that $x_{k} \rightarrow \pi(t)$ as $k \rightarrow \infty$ uniformly on $[0, T]$ as in the proof of Theorem 2.1. This proves the theorem.

References

[1] T. A. Burton and T. Furumochi, Periodic solutions of Volterra equations and attractivity, Dyn. Sys. Appl. 3 (1994), 583-598.
[2] T. A. Burton and T. Furumochi, Periodic solutions of a Volterra equation and robustness, Nonlinear Anal. 25 (1995), 1199-1219.
[3] T. A. Burton and T. Furumochi, Almost periodic solutions of Volterra equations and attractivity, J. Math. Anal. Appl. 198 (1996), 581-599.
[4] S. K. Choi and N. J. Koo, Asymptotic property of linear Volterra difference system, J. Math. Anal. Appl. 321 (2006), 260-272.
[5] T. Furumochi, Periodic solutions of Volterra difference equations and attractivity, Nonlinear Anal. 47 (2001), 4013-4024.
[6] G. Gripengerg, On the convergence of solutions of Volterra equations to almostperiodic functions, Quart. Appl. Math. 39 (1981/82), no. 3, 363-373.
[7] R. K. Miller, Asymptotically almost periodic solutions of a nonlinear Volterra system, SIAM J. Math. Anal. 2 (1971), 435-444.

\author{

*
 Department of Mathematics Chungnam National University Daejon 305-764, Republic of Korea E-mail: sgchoi@cnu.ac.kr
 **
 Department of Mathematics
 Chungnam National University
 Daejeon 305-764, Republic of Korea
 E-mail: njkoo@cnu.ac.kr

 Department of Mathematics
 Chungnam National University
 Daejeon 305-764, Republic of Korea
 E-mail: yh800420@hanmail.net

 Department of Mathematics
 Chungnam National University
 Daejeon 305-764, Republic of Korea
 E-mail: cmyun@cnu.ac.kr
}

[^0]: Received May 17, 2010; Accepted May 27, 2010.
 2010 Mathematics Subject Classification: Primary 45D05, 45M15.
 Key words and phrases: Volterra equation, periodic solution, asymptotically periodic solution, global attractivity.

 Correspondence should be addressed to Namjip Koo, njkoo@math.cnu.ac.kr.
 This study was financially supported by research fund of Chungnam National University in 2009.

