JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 2, June 2010

PERIODIC SOLUTIONS OF VOLTERRA EQUATIONS

Sung Kyu Choi*, Namjip Koo**, Yun Hei Yeo***, and ChanMi Yun****

ABSTRACT. We study the existence of periodic solutions of Volterra equations by using the limiting equations and contraction mappings.

1. Introduction

Miller [7] studied forced oscillations in a nonlinear system of Volterra integral equations of the form

$$x_{1}(t) = f_{1}(t) - \int_{0}^{t} a_{1}(t-s)g_{1}(s, x_{1}(s), x_{2}(s))ds - \int_{0}^{t} a_{2}(t-s)g_{2}(s, x_{1}(s), x_{2}(s))ds, x_{2}(t) = f_{2}(t) - \int_{0}^{t} a_{2}(t-s)g_{1}(s, x_{1}(s), x_{2}(s))ds - \int_{0}^{t} a_{1}(t-s)g_{2}(s, x_{1}(s), x_{2}(s))ds.$$

$$(1.1)$$

where the functions $f_i(t)$ and $g_i(t, x_1, x_2)$, i = 1, 2, are asymptotically almost periodic in t. (1.1) arises in a natural way from the initial boundary

Received May 17, 2010; Accepted May 27, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 45D05, 45M15.

Key words and phrases: Volterra equation, periodic solution, asymptotically periodic solution, global attractivity.

Correspondence should be addressed to Namjip Koo, njkoo@math.cnu.ac.kr.

This study was financially supported by research fund of Chungnam National University in 2009.

402 Sung Kyu Choi, Namjip Koo, Yun Hei Yeo, and ChanMi Yun

value problem:

$$u_{t} = u_{xx}, t > 0, \ 0 < x < \pi, u(0, x) = F(x), 0 < x < \pi, u_{x}(t, 0) = g_{1}(t, u(t, 0), u(t, \pi)), t > 0, u_{x}(t, \pi) = -g_{2}(t, u(t, 0), u(t, \pi), t > 0. (1.2)$$

The boundary conditions in this diffusion problem (1.2) are motivated by the theory of superfluidity of liquid helium [7]. Also, see [6].

Burton and Furumochi [1] studied the existence of periodic solutions of

$$x(t) = a(t) - \int_0^t D(t, s, x(s)) ds, \ t \in \mathbb{R}^+ = [0, \infty),$$
(1.3)

and its limiting equation

$$x(t) = p(t) - \int_{-\infty}^{t} P(t, s, x(s)) ds, \ t \in \mathbb{R} = (-\infty, \infty), \tag{1.4}$$

by using techniques on limiting equations, Liapunov functions, the theory of minimal solutions, and contraction mappings. Also, they investigated the existence of almost periodic solutions of (1.3) and (1.4) in [3].

Furumochi [5] obtained discrete analogues of the results in [1], that is, he obtained the existence of periodic solution of the Volterra difference equations

$$x(n+1) = a(n) - \sum_{k=0}^{n} D(n, k, x(k)), \ n \in \mathbb{Z}^{+},$$
(1.5)

and

$$x(n+1) = p(n) - \sum_{-\infty}^{n} P(n, k, x(k)), \ n \in \mathbb{Z}.$$
 (1.6)

For the asymptotic property of linear Volterra difference equations, see [4].

In this paper, we investigate the existence of bounded periodic solutions of (1.3) and (1.4). This study complements [1].

2. Main Results

We are concerned with systems of Volterra equations

$$x(t) = a(t) - \int_0^t D(t, s, x(s)) ds, \ t \in \mathbb{R}^+ = [0, \infty),$$
(2.1)

$$x(t) = a(t) - \int_{-\infty}^{t} D(t, s, x(s)) ds, \ t \in \mathbb{R} = (-\infty, \infty),$$
(2.2)

and

$$x(t) = p(t) - \int_{-\infty}^{t} P(t, s, x(s)) ds, \ t \in \mathbb{R},$$
(2.3)

where $a: \mathbb{R} \to \mathbb{R}^n$, $p: \mathbb{R} \to \mathbb{R}^n$, $D: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $P: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ are continuous, and

$$p(t+T) = p(t), \ q(t) := a(t) - p(t) \to 0 \text{ as } t \to \infty,$$
 (2.4)

where T > 0 is a constant,

$$P(t+T, s+T, x) = P(t, s, x), \quad Q(t, s, x) := D(t, s, x) - P(t, s, x), \quad (2.5)$$

and for any J > 0 there are continuous functions $P_J : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ and $Q_J : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ such that

$$P_J(t+T,s+T) = P_J(t,s) \text{ if } t, s \in \mathbb{R},$$

$$|P(t,s,x)| \leq P_J(t,s) \text{ if } t, s \in \mathbb{R} \text{ and } |x| \leq J,$$

where $|\cdot|$ denotes the Euclidean norm of \mathbb{R}^n , and $|Q(t,s,x)| \leq Q_J(t,s)$ if $t, s \in \mathbb{R}$ and $|x| \leq J$,

$$\int_{-\infty}^{t} P_J(t+\tau, s) ds \to 0 \text{ uniformly for } t \in \mathbb{R} \text{ as } \tau \to \infty$$
(2.6)

$$\int_0^t P_J(t,s)ds \to 0 \text{ as } t \to \infty$$
(2.7)

or

$$\int_{-\infty}^{t} Q_J(t,s) ds \to 0 \text{ as } t \to \infty$$
(2.8)

and

$$\int_{-\infty}^{t} Q_J(t+\tau,s) ds \to 0 \text{ uniformly for } t \in \mathbb{R} \text{ as } \tau \to \infty.$$

First we obtain a relation between solution of (2.2) and

$$x(t) = p(t+\sigma) - \int_{-\infty}^{t} P(t+\sigma, s+\sigma, x(s))ds, \ t \in \mathbb{R},$$
(2.9)

where $0 \leq \sigma < T$.

THEOREM 2.1. Under the assumptions (2.4), (2.5), (2.6) and (2.8), we suppose that (2.2) has an \mathbb{R} -bounded solution x(t) with an initial time in \mathbb{R} . Let (s_k) be a sequence in \mathbb{R} with $s_k \to \infty$ as $k \to \infty$. Then the sequence $(x_k(t))$ converges to an \mathbb{R} -bounded solution y(t) of (2.9) uniformly on any compact subset of \mathbb{R} as $k \to \infty$, where $x_k(t) := x(t+s_k), t \in \mathbb{R}$.

Proof. Since x(t) is \mathbb{R} -bounded, the set $\{x_k(t) : t \in \mathbb{R}\}$ is uniformly bounded on \mathbb{R} . From (2.4), (2.5), and (2.8) we deduce that x(t) is uniformly continuous on \mathbb{R} . Since $x_k(t)$ is obtained by an s_k -translation to the left of x(t), the set $\{x_k(t) : t \in \mathbb{R}\}$ is equicontinuous. By the Ascoli's theorem, the sequence $(x_k(t))$ converges to some \mathbb{R} -bounded continuous function y(t) uniformly on any compact subset of \mathbb{R} as $k \to \infty$.

Now, we show that y(t) satisfies (2.9) on \mathbb{R} . For any $k \in \mathbb{N}$, let ν_k be an integer with $\nu_k T \leq s_k < \nu_{k+1}T$. Let $\sigma_k = s_k - \nu_k T$. By taking a subsequence if necessary, we may assume that (σ_k) converges to some σ with $0 \leq \sigma < T$. From (2.2), we have

$$\begin{aligned} x_k(t) &= x(t+s_k) \\ &= a(t+s_k) - \int_{-\infty}^{t+s_k} D(t+s_k, s, x(s)) ds \\ &= p(t+\sigma_k) + q(t+s_k) - \int_{-\infty}^{t+s_k} P(t+\sigma_k, s+\sigma_k, x(s+s_k)) ds \\ &- \int_{-\infty}^{t+s_k} Q(t+s_k, s, x(s)) ds. \end{aligned}$$
(2.10)

Note that $p(t + \sigma_k) \rightarrow p(t + \sigma)$ and $q(t + s_k) \rightarrow 0$ as $k \rightarrow \infty$. Let J > 0 be a number with $|x| \leq J$. From (2.6), we obtain that for any $\epsilon > 0$ there exists a $\tau > 0$ such that

$$\int_{-\infty}^{t} P_J(t+\tau, s) ds < \epsilon, \ t \in \mathbb{R}.$$
(2.11)

In view of (2.8) we have

$$\lim \sup_{k \to \infty} \left| \int_{-\infty}^{t+s_k} Q(t+s_k, s, x(s)) ds \right|$$

$$\leq \lim \sup_{k \to \infty} \int_{-\infty}^{t+s_k} |Q(t+s_k, s, x(s))| ds$$

$$= 0.$$
 (2.12)

Also,

$$\begin{split} \lim \sup_{k \to \infty} |\int_{-\infty}^{t+s_k} P(t+\sigma_k, s+\sigma_k, x(s+s_k)) ds \\ &-\int_{-\infty}^t P(t+\sigma, s+\sigma, y(s)) ds | \\ \leq \lim \sup_{k \to \infty} |\int_t^{t+s_k} [P(t+\sigma_k, s+\sigma_k, x_k(s)) \\ &-P(t+\sigma, s+\sigma, y(s))] ds | \\ &+\lim \sup_{k \to \infty} \int_{-\infty}^t P_J(t+\sigma_k, s+\sigma_k) ds + \int_{-\infty}^t P_J(t+\sigma, s+\sigma) ds \\ < \epsilon + \epsilon = 2\epsilon, \end{split}$$

$$(2.13)$$

by (2.6) and (2.11). Hence it follows from (2.12) and (2.13) that

$$y(t) = p(t+\sigma) - \int_{-\infty}^{t} P(t+\sigma, s+\sigma, y(s)) ds, \ t \in \mathbb{R},$$

by letting $k \to \infty$ in (2.10). This completes the proof.

DEFINITION 2.2. A function $f : \mathbb{R} \to \mathbb{R}^n$ is called asymptotically *T*-periodic, T > 0 is a constant, if f = g + h, where g is *T*-periodic, i.e, g(t+T) = g(t) for all $t \in \mathbb{R}$, and $\lim_{t\to\infty} h(t) = 0$.

THEOREM 2.3. Suppose that (2.4), (2.5), (2.6) and (2.8). If (2.3) has a unique \mathbb{R} -bounded solution $x_0(t)$ on \mathbb{R} , then the following hold:

(i) $x_0(t)$ is *T*-periodic.

(ii) Any \mathbb{R} -bounded solution x(t) of (2.2) with an initial time in \mathbb{R} is asymptotically T-periodic and approaches to $x_0(t)$ as $t \to \infty$.

Proof. (i) Let $x_1(t) = x_0(t+T)$, $t \in \mathbb{R}$. We show that $x_1(t) = x_0(t)$ for all $t \in \mathbb{R}$. Since $x_0(t)$ is a unique \mathbb{R} -bounded solution of (2.2) on \mathbb{R} , $x_1(t)$ is also an \mathbb{R} -bounded solution of (2.2) on \mathbb{R} . From the uniqueness of solutions, we have $x_1(t) = x_0(t)$ for all $t \in \mathbb{R}$.

(ii) We show that $x(t) \to x_0(t)$ as $t \to \infty$. Let $x_k(t) = x(t+s_k)$ with $s_k = kT$. Then, by Theorem 2.1,

$$x_k(t) \to y(t)$$

uniformly on any compact subset of \mathbb{R} as $k \to \infty$, where y(t) is an \mathbb{R} bounded solution of (2.9) with $0 \leq \sigma < T$, and thus is an \mathbb{R} -bounded solution of (2.2) when $\sigma = 0$. Also, $y(t) = x_0(t)$ from the uniqueness of solutions. Thus $x(t) = x_0(t) + \varphi(t)$, where $\lim_{t\to\infty} \varphi(t) = 0$. This implies that x(t) is asymptotically *T*-periodic. This completes the proof. \Box

405

Sung Kyu Choi, Namjip Koo, Yun Hei Yeo, and ChanMi Yun

THEOREM 2.4. [1] Suppose that (2.4), (2.5) and (2.6) with $q(t) \equiv 0$ and $Q(t, s, x) \equiv 0$. Assume that for any J > 0 there exists a continuous function $L_J : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ such that

$$|P(t, s, x) - P(t, s, y)| \le L_J(t, s)|x - y|$$
(2.14)

when $t, s \in \mathbb{R}$ and $|x|, |y| \leq J$. Let

$$\lambda_J := \sup_{t \in \mathbb{R}} \int_{-\infty}^t L_J(t, s) ds < 1$$

and

406

$$\lambda := \sup_{J>0} \lambda_J < 1. \tag{2.15}$$

Then

(i) (2.3) has a unique \mathbb{R} -bounded T-periodic solution on \mathbb{R} .

(ii) Any \mathbb{R} -bounded solution of (2.3) with initial time $t_0 \in \mathbb{R}$ and bounded continuous initial function $\varphi : (-\infty, t_0) \to \mathbb{R}^n$ approaches to the *T*-periodic solution.

Consider the linear Volterra equation

$$x(t) = p(t) - \int_{-\infty}^{t} P(t,s)x(s)ds, t \in \mathbb{R},$$
(2.16)

where $p : \mathbb{R} \to \mathbb{R}^n$ and $P : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuous.

Theorem 2.5. [1] If

$$b(t) := \int_{-\infty}^{t} |P(t,s)| ds < 1, t \in \mathbb{R}$$
(2.17)

holds, then for any $t_0 \in \mathbb{R}$ and any bounded continuous function φ : $(-\infty, t_0) \to \mathbb{R}^n$, the solution $x(t) = x(t, t_0, \varphi)$ of (2.16) satisfies

$$|x(t)| \le X(t) := \max\left\{\sup_{t_0 \le s \le t} B(s), \sup_{s \le t_0} |\varphi(s)|, |x(t_0+)|\right\}, \ t \ge t_0,$$

where

$$B(s) := \frac{1}{1 - b(s)} \sup_{t_0 \le u \le s} |p(u)|, \ s \ge t_0.$$

Now, we obtain the periodicity and attractivity of solution of the linear equation (2.16).

DEFINITION 2.6. The solution x(t) of (2.16) is said to be globally attractive if

$$\lim_{t \to \infty} [x(t) - y(t)] = 0$$

for any solution y(t) of (2.16).

THEOREM 2.7. Suppose that p(t + T) = p(t) and $P(t + T, s + T) = P(t, s), t, s \in \mathbb{R}$. In addiction to (2.17), if b(t) is continuous, then (2.16) has a unique \mathbb{R} -bounded solution on \mathbb{R} which is T-periodic and globally attractive.

Proof. In view of Theorem 2.5, the solution x(t) of (2.16) satisfies

$$|x(t)| \le X(t), \ t \ge t_0, t_0 \in \mathbb{R},$$

that is, x(t) is \mathbb{R} -bounded. From Theorem 2.4, x(t) is *T*-periodic. Also, x(t) is globally attractive by Theorem 2.4.

In (2.5), we let Q(t, s, x) = 0. So we consider

$$x(t) = a(t) - \int_0^t P(t, s, x(s)) ds, t \in \mathbb{R}^+,$$
(2.18)

where $a: \mathbb{R}^+ \to \mathbb{R}^n$ is bounded continuous and $P: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous.

THEOREM 2.8. Suppose that (2.4), (2.5) and (2.6) with $Q(t, s, x) \equiv 0$. Under the assumptions (2.14) and (2.15), the following hold:

- (i) (2.18) has a unique \mathbb{R}^+ -bounded solution x(t) on \mathbb{R}^+ .
- (ii) (2.3) has a unique T-periodic solution $\pi(t)$ on \mathbb{R} .

(iii) $x(t) \to \pi(t)$ as $t \to \infty$.

Proof. (i) Let B be the Banach space of all bounded continuous functions $\xi : \mathbb{R}^+ \to \mathbb{R}^n$ with

$$\|\xi\| = \sup_{t \ge 0} |\xi(t)|.$$

Define H on B by

$$(H\xi)(t) := a(t) - \int_0^t P(t, s, \xi(s)) ds.$$

Then we have

$$|(H\xi)(t)| \le |a(t)| + \int_0^t |P(t,s,\xi(s))| ds.$$

Thus, from (2.6), $H\xi$ is bounded. It follows that $H(B) \subset B$.

We show that H is a contraction. To do this we let $\xi_1, \xi_2 \in H$ with $\|\xi_1\|, \|\xi_2\| \leq J$ for some J > 0. Then

$$\begin{aligned} |(H\xi_1)(t) - (H\xi_2)(t)| &\leq \int_0^t |P(t, s, \xi_1(s)) - P(t, s, \xi_2(s))| ds \\ &\leq \int_0^t L_J(t, s) |\xi_1(s) - \xi_2(s)| ds \\ &\leq \lambda_J ||\xi_1 - \xi_2|| \\ &< \lambda ||\xi_1 - \xi_2||, \end{aligned}$$

by (2.14) and (2.15). This implies that H is a contraction. Hence H has a unique fixed point x(t) of H by the Contraction Mapping Principle.

(ii) Let x(t) denote again \mathbb{R} -extension of the given x(t) obtain by defining

$$\begin{cases} x(t) = x(0) = a(0) & \text{for } t < 0, \\ x(t) & \text{for } 0 \le t < \infty. \end{cases}$$

For any $k \in \mathbb{N}$, set $x_k(t) = x(t + kT)$, $t \in \mathbb{R}$. In view of Theorem 2.4, (2.3) has a unique *T*-periodic solution, say $\pi(t)$ in \mathbb{R} . Therefore $\pi(t)$ is a unique \mathbb{R} -bounded solution of (2.3) by Theorem 2.1.

(iii) We can deduce that $x(t) - \pi(t) \to 0$ as $k \to \infty$ since we can show that $x_k \to \pi(t)$ as $k \to \infty$ uniformly on [0, T] as in the proof of Theorem 2.1. This proves the theorem.

References

- T. A. Burton and T. Furumochi, Periodic solutions of Volterra equations and attractivity, Dyn. Sys. Appl. 3 (1994), 583-598.
- [2] T. A. Burton and T. Furumochi, Periodic solutions of a Volterra equation and robustness, *Nonlinear Anal.* 25 (1995), 1199-1219.
- [3] T. A. Burton and T. Furumochi, Almost periodic solutions of Volterra equations and attractivity, J. Math. Anal. Appl. 198 (1996), 581-599.
- [4] S. K. Choi and N. J. Koo, Asymptotic property of linear Volterra difference system, J. Math. Anal. Appl. 321 (2006), 260-272.
- [5] T. Furumochi, Periodic solutions of Volterra difference equations and attractivity, Nonlinear Anal. 47 (2001), 4013-4024.
- [6] G. Gripengerg, On the convergence of solutions of Volterra equations to almostperiodic functions, Quart. Appl. Math. 39 (1981/82), no. 3, 363-373.
- [7] R. K. Miller, Asymptotically almost periodic solutions of a nonlinear Volterra system, SIAM J. Math. Anal. 2 (1971), 435-444.

408

*

Department of Mathematics Chungnam National University Daejon 305-764, Republic of Korea *E-mail*: sgchoi@cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: njkoo@cnu.ac.kr

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: yh800420@hanmail.net

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: cmyun@cnu.ac.kr