DOI QR코드

DOI QR Code

ON THE FUZZY STATISTICAL CONVERGENCE IN A FUZZY NORMED LINEAR SPACE

  • Received : 2010.05.04
  • Accepted : 2010.06.01
  • Published : 2010.06.30

Abstract

In this paper, we introduce the notions of the fuzzy statistical convergence of sequences, the fuzzy statistical Cauchy sequence on a fuzzy normed linear space. And we investigate some properties of the related completeness.

Keywords

Acknowledgement

Supported by : Hannam University

References

  1. T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear space, J. fuzzy math. 11 (2003), no. 3, 687-705.
  2. M. Balcerzak and K. Dems and A. Komisarki, Statistical convergence and idal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715-729 https://doi.org/10.1016/j.jmaa.2006.05.040
  3. H. Fast, Sur la convergence statistique. Colloq., Math 2, (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  4. J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313
  5. A. K. Katsaras, Fuzzy topological vector space I, Fuzzy sets and systems 6 (1981), 85-95. https://doi.org/10.1016/0165-0114(81)90082-8
  6. A. K. Katsaras, Fuzzy topological vector space, Fuzzy Sets and Systems 12 (1984) 143-154. https://doi.org/10.1016/0165-0114(84)90034-4
  7. A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135-146. https://doi.org/10.1016/0022-247X(77)90233-5
  8. S. V. Krishna and K. K. M. Sarma, Fuzzy topological vector spaces - topological generation and normability, Fuzzy sets and systems 41 (1991), 89-99. https://doi.org/10.1016/0165-0114(91)90159-N
  9. S. V. Krishna and K. K. M. Sarma, Fuzzy continuity of linear maps on vector spaces, Fuzzy sets and systems 45 (1992), 341-354. https://doi.org/10.1016/0165-0114(92)90153-U
  10. S. V. Krishna and K. K. M. Sarma, Seperation of fuzzy normed linear spaces, Fuzzy sets and systems 63 (1994), 207-217. https://doi.org/10.1016/0165-0114(94)90351-4
  11. R. Larsen, Functional analysis, Marcel Dekker, Inc. New york, 1973.
  12. J. R. Munkres, Topology: a first course, Prentice-Hallinc., New Jersey, 1975.
  13. G. S. Rhie and B. M. Choi and D. S. Kim, On the completeness of fuzzy normed linear spaces, Math. Japonica 45 (1997), no. 1, 33-37.
  14. G. S. Rhie and I. A. Hwang and J. H. Kim, On the statistically complete fuzzy normed linear space, J. Chungcheong Math. Soc. 22 (2009), no. 3, 597-606.
  15. I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375 https://doi.org/10.2307/2308747
  16. C. Sensimen and S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy sets and systems 159 (2008), 361-370. https://doi.org/10.1016/j.fss.2007.06.008
  17. R. H. Warren, Neighborhoods bases and continuity in fuzzy topological spaces, Rocky Mountain J. Math. 8 (1978), 459-470. https://doi.org/10.1216/RMJ-1978-8-3-459