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LINEAR ISOPERIMETRIC INEQUALITY AND
GROMOV HYPERBOLICITY ON ALEKSANDROV

SURFACES

Byung-Geun Oh*

Abstract. We prove that a simply-connected open Aleksandrov
surface that satisfies a linear isoperimetric inequality is hyperbolic
in the sense of Gromov.

1. Introduction

The main topic of this paper is Gromov hyperbolicity, and we study
it on Aleksandrov surfaces. First, let us explain what Gromov hyper-
bolicity means. A metric space (X, d) is called hyperbolic in the sense
of Gromov, or Gromov hyperbolic, if there exists a constant δ > 0 such
that every four points x, y, z, w ∈ X satisfy the inequality

(1.1) (x, y)w ≥ min{(x, z)w, (y, z)w} − δ,

where

(a, b)c =
1
2
{d(a, c) + d(b, c)− d(a, b)}.

If it is needed to specify the number δ, we will call X δ-hyperbolic. The
meaning of the quantity (a, b)c, called the Gromov product of a and b
with respect to c, is illustrated in Figure 1 in the case when X is Eu-
clidean. Gromov hyperbolic spaces were first introduced in the study of
finitely generated free groups, and then it was applied to other branches
of mathematics. For further study of Gromov hyperbolic spaces, see
[6, 4, 7].
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Figure 1. Gromov product

Next we explain Aleksandrov surfaces. To do this, let us introduce
some terminologies for metric spaces. A metric space (X, d) is called
intrinsic if we have

(1.2) d(x, y) = inf{length(γ) : γ is a curve in X joining x and y}
for every x, y ∈ X. Here length(γ) denotes the arc length of the curve γ.
An intrinsic metric space is called geodesic if “infimum” can be replaced
by “minimum” in (1.2); i.e., an intrinsic metric space is geodesic if and
only if every two points can be joined by a shortest curve – a curve whose
length is the same as the distance between them. One may check, using
the Arzelá-Ascoli Theorem, that a complete locally compact intrinsic
space must be geodesic. Also note that if X is a path-connected metric
space, by redefining the metric on X if necessary, it is possible to make
X intrinsic.

Now we define Aleksandrov surfaces. With the terminology “Alek-
sandrov surface”, we mean a two-dimensional topological manifold with
an intrinsic metric whose length element is locally expressed in the form

(1.3) eu(z)|dz|,
where z is a local complex coordinate and u is a difference between two
subharmonic functions such that exp z is locally integrable on rectifi-
able curves in the z-plane. The most typical example of an Aleksan-
drov surface is, as expected, a two-dimensional Riemannian manifold.
By this reason Aleksandrov surfaces are regarded as a generalization of
two-dimensional Riemannian manifolds. Another typical example is a
surface with a polyhedral metric, which means that each point is locally
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isometric to a cone with the length element

|z|α−1|dz|
for some α > 0 (Figure 2). To study more about Aleksandrov surfaces,
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Figure 2. An example of a polyhedral surface

see for example [1, 10, 2, 9]. If the reader is not familiar with Alek-
sandrov surfaces, we recommend to skip the details about Aleksandrov
surfaces and just accept them as “nice” surfaces such as Riemannian
manifolds or polyhedral surfaces. This should not cause any problem
since Aleksandrov surfaces are nice enough to define integrals, curva-
tures, etc., and more importantly, most applications are found in the
category of Riemannian manifolds and polyhedral surfaces.

Now suppose X is an Aleksandrov surface. For a domain Ω ⊂ X and
a curve γ ⊂ X, we denote the area of Ω by Area(Ω), and the length
of γ by length(γ). Then we say that X satisfies a linear isoperimetric
inequality if there exists a constant C such that the inequality

(1.4) Area(Ω) ≤ C · length(∂Ω)

holds for every domain Ω ⊂ X, where ∂Ω denotes the boundary of Ω.
Note that a surface is called open if it is not compact and does not have
boundary, hence a simply-connected surface is open if and only if it is
topologically equivalent to the unit disk. Our main theorem is:
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Theorem 1.1. Every open simply-connected Aleksandrov surface
which satisfies a linear isoperimetric inequality is Gromov hyperbolic.

The converse of Theroem 1.1 is false. If X is an infinite cylinder,
one can show that X is Gromov hyperbolic but does not satisfy linear
isoperimetric inequalities (1.4) for any constant C.

Theorem 1.1 should be accepted as a generalization of the result in [4,
p. 66], where Theorem 1.1 was proved for open simply-connected two-
dimensional Riemannian manifolds that are complete. The renovations
are that our theorem is about Aleksandrov surfaces instead of Riemann-
ian manifolds, and more importantly that we have proved it without the
completeness condition.

2. Incomplete metric space

Suppose X is a geodesic space. A geodesic triangle (or for brevity, we
just call triangle) λ is a topological circle such that λ = a∪ b∪ c, where
each sides, a, b and c, are shortest curves in X. The end points of a, b, c
are called vertices of λ, and we define the minimal size of λ by

(2.1) minsize(λ) := inf max
i,j

|yi − yj |,
where the infimum is taken over all y1 ∈ a, y2 ∈ b and y3 ∈ c. Note that
λ has the minimal size δ if and only if any side of λ is contained in the
closed δ-neighborhood of the union of the other two sides.

It is known that when X is a geodesic space, X is Gromov δ-hyperbolic
if and only if X satisfies the following condition (cf. [4], p. 10): there
exists a constant δ′ such that minsize(λ) ≤ δ′ for every geodesic triangle
λ ⊂ X. Moreover, it is known that the constants δ and δ′ depends only
on each other.

Now suppose X is an Aleksandrov surface with the metric d. For a
compact Jordan region Ω ⊂ X that is topologically equivalent to the
closed unit disk, we define a metric on Ω by

dΩ(x, y) := inf{length(γ) : γ is a curve in Ω joining x and y}.
Note that even though (X, d) is just intrinsic, the metric space (Ω, dΩ)
must be geodesic because of the compactness assumption of Ω (and
by the Arzelá-Ascoli Theorem). Moreover if (X, d) satisfies a linear
isoperimetric inequality (1.4) for some constant C, then it is also true
for (Ω, dΩ) with the same constant C. Therefore to prove Theorem 1.1,
it suffices to show that if X satisfies a linear isoperimetric inequality for
some constant C, then every Ω-geodesic triangle has the minimal size at
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most δ′ where δ′ depends only on C. Then since Ω is a geodesic space,
this will show that Ω is δ-hyperbolic with δ independent of Ω, hence X
will be also δ-hyperbolic. In fact, if {Ωk}∞k=1 is an increasing sequence
of compact Jordan regions which are δ-hyperbolic and exhaust X, then
since

d(x, y) = lim
k→∞

dΩk
(x, y), for x, y ∈ X,

one can easily see from (1.1) that X is also δ-hyperbolic.

3. Proof of Theorem 1.1

Suppose Ω ⊂ X is a compact Jordan region and λ is an Ω-geodesic
triangle. Let ∆ be the triangular region1 enclosed by λ. By the Uni-
formization Theorem of Huber [8], there is an isometry

h : X → D(R) := {z ∈ C : |z| < R}, R ∈ (0,∞],

where D(R) is equipped with a length element of the form

ρ̃(z)|dz| = eu(z)|dz|.

Here u is a difference of two subharmonic functions such that expu
is locally integrable on reticfiable curves in D(R). Note that Huber’s
Uniformization Theorem says that the function u in the definition of
Aleksandrov surfaces (1.3) is in fact defined globally. Then since ∆
is a closed Jordan region, the Riemann mapping Theroem and the
Carathéodory Theorem [3] (cf. [5], p.41) imply that there is a home-
omorphism ϕ : h(∆) → T , where T is a triangular region in C whose
boundary is the Euclidean equilateral triangle of side-length 2, such that
ϕ is conformal in the interior of h(∆), continuous on h(∆), and sends
the vertices of h(∆) to the vertices of T . We define

µ(z) :=

{
ρ̃(ϕ−1(z))|(ϕ−1)′(z)|, if z ∈ T ;
0, otherwise,

1With a triangular region, we mean a closed set such that it is homeomorphic to
the closed unit disc and its boundary is a topological triangle.
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for all z ∈ C. Also we define for x ∈ C and r > 0,

D(x, r) := {z ∈ C : |z − x| ≤ r},

L(x, r) :=
∫

∂D(x,r)
µ(z)|dz| =

∫

|z−x|=r
µ(z)|dz|,

A(x, r) :=
∫

D(x,r)
µ(z)2dm =

∫

|z−x|≤r
µ(z)2dm,

where dm denotes the Lebesque measure in C. Finally let ψ := h−1◦ϕ−1.
Note that even though µ is not smooth, the function r → A(x, r)

is still differentiable. In fact, by the definition of Aleksandrov surfaces
and our construction, µ is integrable over rectifiable curves in C. In
particular,

∫
∂T µ(z)|dz| < ∞. Therefore if the Aleksandrov surface X

satisfies a linear isoperimetric inequality for some constant C, then
∫

C
µ(z)2dm =

∫

T
µ(z)2dm ≤ C

∫

∂T
µ(z)|dz| < ∞,

hence µ2 is integrable in C. Now because

A(x, r0) =
∫ r0

0

∫ 2π

0
µ(r, θ)2 r dθ dr,

the Fubini’s Theorem implies that the function r → ∫ 2π
0 µ(r, θ)2rdθ is

finite almost every r and integrable over [0,∞). Therefore A(x, r) is an
absolutely continuous function and it is differentiable at almost every r
with the derivative

d

dr
A(x, r) =

∫ 2π

0
µ(r, θ)2rdθ.

For the rest of the proof, we follow the proof given in [4] (where the
proof is written in French). Suppose that every Jordan region D ⊂ X
satisfies the inequality (1.4) for some constant C which does not depend
on D. Then it is easy to see that there are three constants A0 > 0, c > 1,
and a > 2 such that

(i) 2a1/c(a− 2)−1 < 1, and
(ii) any Jordan region D ⊂ X with A0 ≤ Area(D) ≤ a2A0 satisfies the

inequality

(3.1) 16πc ·Area(D) ≤ {length(∂D)}2.

In fact, one may take A0 = 16πC2+1, c = A0/(A0−1), and a sufficiently
large so that (i) holds.
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Lemma 3.1. Let x ∈ C and r > 0 be given. We suppose that D :=
D(x, r) meets ∂T at most one side of T and A0 ≤ A(x, r) ≤ a2A0. Then
the following inequality holds:

4πc ·A(x, r) ≤ L(x, r)2.

Proof. The statement is clear when ∂T ∩∂D = ∅. So we assume that
D meets ∂T at one side of T . (Figure 3)

.

T

D
x

Figure 3. The case ∂T ∩ ∂D 6= ∅

Let γ = ∂D ∩ T and τ = ∂T ∩D. Then since ψ(T ∩D) is a Jordan
region in Ω ⊂ X with boundary ψ(γ)∪ψ(τ), the inequality (3.1) implies
that

16πc

∫

T∩D
µ(z)2dm ≤

(∫

τ∪γ
µ(z)|dz|

)2

.

But note that ψ(τ) is an Ω-shortest curve because it is contained in a
side of ∆ and all sides of ∆ are Ω-shortest curves. Now since ψ(γ) is a
curve in Ω with the same end points as ψ(τ), the µ-length of τ is less
than or equal to that of γ. Hence

4πcA(x, r) = 4πc

∫

D
µ(z)2dm = 4πc

∫

T∩D
µ(z)2dm

≤ 1
4

(∫

τ∪γ
µ(z)|dz|

)2

≤
(∫

γ
µ(z)|dz|

)2

=
(∫

∂D
µ(z)|dz|

)2

= L(x, r)2,

as desired.
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Let R be a rhombus which is the union of T and a reflection of T with
respect to a side of T . For each x ∈ R, we denote by d(x) the (Euclidean)
distance from x to the boundary of R, and for a fixed constant A > 0
we define

r(x,A)

:=

{
the smallest r ∈ (0, d(x)) with A(x, r) = A, if such r exists;
d(x), otherwise.

Lemma 3.2. For all x ∈ R,
(

r(x, a2A0)
r(x,A0)

)2c

≤ a2.

Proof. If r(x,A0) = d(x), there is nothing to prove. Next, we consider
the case r(x, a2A0) < d(x).

Let r0 := r(x,A0) and ra := r(x, a2A0). By Lemma 3.1 and the
Cauchy-Schwarz inequality, we have

4πc

2πr
A(x, r) ≤ 1

2πr
L(x, r)2 =

1
2πr

(∫

∂D(x,r)
µ(z)|dz|

)2

≤ 1
2πr

(∫

∂D(x,r)
µ(z)2|dz|

)(∫

∂D(x,r)
|dz|

)

=

(∫

∂D(x,r)
µ(z)2|dz|

)
=

d

dr
A(x, r),

for all r ∈ [r0, ra]. Then by integrating this inequality from r0 to ra, we
have (

ra

r0

)2c

≤ A(x, ra)
A(x, r0)

= a2,

as desired.
Finally if r(x, a2A0) = d(x) and r(x,A0) < d(x), we take the smallest

b ≤ a such that r(x, b2A0) = d(x). Then by the same argument as above,
(

r(x, b2A0)
r(x,A0)

)2c

≤ b2,

hence (
r(x, a2A0)
r(x,A0)

)2c

=
(

r(x, b2A0)
r(x,A0)

)2c

≤ b2 ≤ a2.

This completes the proof of Lemma 3.2.
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Lemma 3.3. For all x ∈ R, we have

r(x,A0) ≥ (1− α)a−1/cd(x),

where α := 2a1/c(a− 2)−1 < 1.

Proof. Suppose there is x0 ∈ R such that

(3.2) r0 := r(x0, A0) < (1− α)a−1/cd(x0).

Then by Lemma 3.2,

(3.3) R0 := r(x0, a
2A0) ≤ a1/cr(x0, A0) < (1− α)d(x0) < d(x0),

hence D(x0, R0) ⊂ R.
Now we claim that there is a point x1 ∈ D(x0, R0) such that

(a) r1 := r(x1, A0) ≤ αr0 and
(b) r1 < (1− α)a−1/cd(x1).

Suppose we have shown the existence of x1 ∈ D(x0, R0) satisfying
the condition (a) above. Then

d(x1) ≥ d(x0)− |x1 − x0|
≥ d(x0)−R0 = d(x0)− r(x0, a

2A0) (since x1 ∈ D(x0, R0))

≥ d(x0)− a1/cr(x0, A0) = d(x0)− a1/cr0 (by (3.3))

> d(x0)− (1− α)d(x0) = αd(x0) (by (3.2))

> αa1/c(1− α)−1r0 (by (3.2))

≥ a1/c(1− α)−1r1 (by the condition (a)),

which shows the inequality (b).
To show the existence of x1 ∈ D(x0, R0) satisfying the condition (a),

let M0 be the average of the function A( · , αr0) over the disc D(x0, R0).
Then by the Fubini’s Theorem,

M0 =
1

πR2
0

∫

D(x0,R0)
A(x, αr0) dm(x)

=
1

πR2
0

∫

D(x0,R0)

∫

D(x,αr0)
µ(y)2 dm(y) dm(x)

=
1

πR2
0

∫

D(x0,R0+αr0)

∫

D(x0,R0)∩D(y,αr0)
µ(y)2 dm(x) dm(y)

≥ 1
πR2

0

∫

D(x0,R0)
µ(y)2|D(x0, R0) ∩D(y, αr0)|C dm(y).
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y
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Figure 4. The sector of D(y, αr0) contained in
D(x0, R0) ∩D(y, αr0)

Here the quantity |D(x0, R0)∩D(y, αr0)|C denotes the Euclidean area of
the region, and its value takes the minimum when y is on the boundary
of D(x0, R0). Hence it is greater than the area of the largest sector of
D(y, αr0) contained in D(x0, R0) ∩D(y, αr0) (Figure 4), or

(αr0)2 arccos
(

αr0

2R0

)
.

Then since
1
π

arccos
(x

2

)
>

1
4

arccos
(x

2

)
>

1
4(1 + x2)

for 0 < x < 1, we have

M0 ≥ 1
πR2

0

(αr0)2 arccos
(

αr0

2R0

)∫

D(x0,R0)
µ(y)2dm(y)

≥ 1
4

(
αr0

R0

)2 1
(1 + (αr0/R0)2)

A(x0, R0)

=
1
4

(αr0)2

R2
0 + (αr0)2

a2A0 ≥ 1
4

(
αr0

R0 + αr0

)2

a2A0.

Now note that R0 ≤ a1/cr0 by (3.3). Then since α = 2a1/c(a− 2)−1,

M0 ≥ 1
4

(
αr0

a1/cr0 + αr0

)2

a2A0 =
1
4

(
α

a1/c + α

)2

a2A0 = A0.
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Hence there is x1 ∈ D(x0, R0) such that A(x1, αr0) ≥ A0. In particular,
this implies r(x1, A0) ≤ αr0, which proves the claim.

Now we apply the above argument repeatedly to xn in place of x0,
and get a sequence {xn} such that rn := r(xn, A0) ≤ αnr0, rn < (1 −
α)a−1/cd(xn), and |xn+1 − xn| ≤ r(xn, a2A0). Then we have

|xn − x0| ≤
n−1∑

k=0

|xk+1 − xk| ≤
n−1∑

k=0

r(xk, a
2A0) ≤

n−1∑

k=0

a1/crk

≤
n−1∑

k=0

a1/cαkr0 ≤ a1/cr0(1− α)−1 < d(x0).

This means that there is a limit point x ∈ R of {xn} such that ev-
ery neighborhood of x has µ-area greater than or equal to A0, since
rn ≤ αnr0 → 0. But this is impossible because µ is a square integrable
function, and this contradiction proves the lemma.

We next consider the tripod T obtained by joining the center of T to the
midpoint of each sides (Figure 5). Note that each foot of T has length
1/
√

3.

Figure 5. Tripod T

For simplicity, let β := (1− α)a−1/c/
√

3.

Lemma 3.4. For all x ∈ T, there exists a number rx such that

1
2
β ≤ rx ≤ β and L(x, rx) ≤ 2

√
πA0.
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Figure 6. Three curves joining each pairs of sides of T

Proof. By symmetry, we may assume that x lies on the diagonal of
R which has length 2

√
3, where R is the rhombus in Lemma 3.3. Then

by Lemma 3.3 and the fact d(x) ≥ 1/
√

3,

r(x,A0) ≥ (1− α)a−1/cd(x) ≥ β,

or
A(x, β) ≤ A0.

If L(x, r)2 ≥ 4πA0 for all r ∈ [β/2, β], then the Cauchy-Schwarz
inequality implies

4πA0 ≤
(∫

∂D(x,r)
µ(z)|dz|

)2

≤ 2πr

∫

∂D(x,r)
µ(z)2|dz|.

Integrating this inequality from β/2 to β, we have

2A0 log 2 ≤ A(x, β) ≤ A0,

which is a contradiction since A0 > 0. This completes the proof of
Lemma 3.4.

Now we are ready to proof the main theorem.

Proof of Theorem 1.1. Let P be a set of points in T such that for
every x ∈ P the Euclidean distance from x to P \{x} is equal to β = (1−
α)a−1/c/

√
3 and that T is contained in the (closed) (β/2)-neighborhood
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of P . Then trivially the number of points in P is at most 3(1+3−1/2/β) =
3(1+(1−α)−1a1/c). We also consider the circles ∂D(x, rx) for all x ∈ P ,
where rx is the number in Lemma 3.4. The sum of their µ-length is at
most 3(1 + (1− α)−1a1/c)2(πA0)1/2.

Now it is easy to find three points on ∂T , one in each side of T , and
three curves joining each pair of these points and consisting of arcs of
∂D(x, rx), x ∈ P (Figure 6). Each of these curves has µ-length at most
δ′ := 3(1 + (1 − α)−1a1/c)2(πA0)1/2, hence the minimal size of the Ω-
geodesic triangle λ = ψ(∂T ) is at most δ′. This, and the argument given
in Section 2, completes the proof of Theorem 1.1.
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[3] C. Carathèodory, Über die Begrenzung einfach zusammenhängender Gebiete,
Math. Ann. 73, (1913), 323–370.

[4] M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des
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