References
- E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321. https://doi.org/10.1112/jlms/s2-30.2.305
- R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924. https://doi.org/10.1090/S0002-9939-1951-0045937-X
- R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507. https://doi.org/10.1215/S0012-7094-45-01244-0
-
R. H. Cameron and D. A. Storvick, An
$L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30. https://doi.org/10.1307/mmj/1029001617 - R. H. Cameron and D. A. Storvick, Feynman integral of variations of functionals, Gaussian Random Fields (Nagoya, 1990), Ser. Probab. Statist. 1, World Sci. Publ. 1991, 144-157.
- K. S. Chang, B. S. Kim and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funct. Anal. Optim. 21 (2000), 97-105. https://doi.org/10.1080/01630560008816942
- J. A. Clarkson and C. R. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), 824-854. https://doi.org/10.1090/S0002-9947-1933-1501718-2
- B. A. Fuks, Analytic functions of several complex variables, Amer. Math. Soc., Providence, Rhode Island, 1963.
- E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, Vol. 1 (3rd ed.), Dover, New York, 1957.
- T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673. https://doi.org/10.2307/2154908
-
G. W. Johnson and D. L. Skoug, A stochastic integration formula for two- parameter Wiener
$\times$ two-parameter Wiener space, SIAM J. Math. Anal. 18 (1987), 919-932. https://doi.org/10.1137/0518070 - B. J. Kim, B. S. Kim and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci. 2004 (2004), 579-598. https://doi.org/10.1155/S0161171204305260
-
B. S. Kim and D. Skoug, Integral transforms of functionals in
$L_2(C_0[0,T])$ , Rocky Mountain J. Math. 33 (2003), 1379-1393. https://doi.org/10.1216/rmjm/1181075469 - J. G. Kim, J. W. Ko, C. Park and D. Skoug, Relationships among transforms, convolutions, and first variations, Internat. J. Math. Math. Sci. 22 (1999), 191-204. https://doi.org/10.1155/S0161171299221916
- Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153-164. https://doi.org/10.1016/0022-1236(82)90103-3
- C. Park, D. Skoug and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. Math. 28 (1998), 1447-1468. https://doi.org/10.1216/rmjm/1181071725
- D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), 1147-1176. https://doi.org/10.1216/rmjm/1181069848
- J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc. 95 (1960), 433-450. https://doi.org/10.1090/S0002-9947-1960-0125433-1
- J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731-738. https://doi.org/10.2140/pjm.1965.15.731
- J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.
- I. Yoo, Convolution and the Fourier-Wiener transform on abstract Wiener space, Rocky Mountain J. Math. 25 (1995), 1577-1587. https://doi.org/10.1216/rmjm/1181072163