JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 2, June 2010

ON CONVERGENCE FOR THE GR_k -INTEGRAL

Gwang Sik Eun* and Ju Han Yoon**

ABSTRACT. In this paper, we study some convergence results for the GR_k -integral.

1. Introduction and preliminaries

In [1], S. Pal, D. K. Ganguly and Lee Peng Yee introduced the GR_k integral. It is a Stieltjes type integral which for k = 1 includes classical Henstock Stieltjes integral in particular case. In [1], some elementary results for the GR_k -integral and also analogue of the Saks-Henstone lemma are studied.

In this paper, we obtain some convergence results for the GR_k -integral. Let k be a fixed positive integer and δ be a positive function defined on [a, b]. We shall have a division D of [a, b] given by $a = x_0 < x_1 < \cdots < x_n = b$ with associated points $\{\xi_0, \xi_1, \cdots, \xi_{n-k}\}$ satisfying

$$\xi_i \in [x_i, x_{i+k}] \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$$
 for $i = 0, 1, \cdots, n-k$

a δ^k -fine division of [a, b]. For a given positive δ , we denote a δ^k -fine division D by $\{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\dots,n-k}$. When k = 1, it coincides with the usual definition of δ -fine division.

In [1], the GR_k -integral is defined as follows:

DEFINITION 1.1. Let g be real-valued function defined on a closed interval $[a, b]^{k+1}$ in the (k + 1)-dimensional space, and f a real-valued function defined on [a, b]. We say that f is GR_k -integrable with respect to g to I on [a, b] if for every $\epsilon > 0$ there is a function $\delta(\xi) > 0$ for

Received March 03, 2010; Accepted April 23, 2010.

 $^{2010 \ {\}rm Mathematics \ Subject \ Classification: \ Primary \ 26A39; \ Secondary \ 28B05.}$

Key words and phrases: GR_k -integral, GR_k -integrable.

Correspondence should be addressed to Gwang Sik Eun, eungs@chungbuk.ac.kr. *This work was supported by the research grant of the Chungbuk National University in 2009.

 $\xi\in[a,b]$ such that for any δ^k -fine division $D=\{[x_i,x_{i+k}],\xi_i\}_{i=0,1,\cdots,n-k}$ we have

$$\left|\sum_{i=0}^{n-k} f(\xi_i)g(x_i,\cdots,x_{i+k}) - I\right| < \epsilon.$$

We shall denote the above Riemann sum by s(f, g; D). If f is integrable with respect to g in the above sense, we write $(f, g) \in GR_k[a, b]$ and denote the integral by $\int_a^b f dg$.

Let $x \in [x_i, x_{i+k}]$ where $x_i < x_{i+1} < \cdots < x_{i+k}$. The jump of g at x, denoted by J(g; x), is defined by

$$J(g;x) = \lim_{x_i \to x, x_{i+k} \to x} g(x_i, \cdots, x_{i+k}),$$

if the limit exists finitely.

Let $[a_i, b_i]$, $i = 1, 2, \dots, p$ be pairwise non-overlapping, and $\bigcup_{i=1}^p [a_i, b_i] \subset [a, b]$. Then $\{D_i\}_{i=1,2,\dots,p}$ is said to be a δ^k -fine partial division of [a, b] if each D_i is a δ^k -fine division of $[a_i, b_i]$. Its corresponding partial Riemann sum is given by $\sum_{i=1}^p s(f, g; D_i)$.

With this notion of partial division we have proved in [1] the following theorem.

THEOREM 1.2 (Saks-Henstone lemma analogue for GR_k -integral). If $(f,g) \in GR_k[a,b]$ and J(g;c) exists for all $c \in (a,b)$, then for every $\epsilon > 0$ there exists a positive function δ on [a,b] such that for any δ^k -fine partial division $\{D_i\}_{i=1,2,\dots,p}$ of [a,b]

$$|s(f,g;D) - F(a,b)| < \epsilon \text{ and } |\sum_{i=1}^{p} \{s(f,g;D_i) - F(a_i,b_i)\}| < (k+1)\epsilon$$

where D_i is a δ^k -fine division of $[a_i, b_i]$ and F(u, v) denotes the GR_k integral on $[u, v] \subset [a, b]$.

2. Some results of convergence theorems for GR_k -integral

DEFINITION 2.1. For $X \subset [a, b]$, we define

$$V_g^k(X) = \inf_{\delta} \sup_{D} \sum_{\xi_i \in X} |g(x_i, \cdots, x_{i+k})|,$$

where supremum is taken over all δ^k -fine partial division $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\dots,n-k}$ with $\xi_i \in X$.

300

 $X \subset [a,b]$ is said to be of g^k -variation zero if $V_g^k(X) = 0$. Let g be a function from $[a,b]^{k+1}$ to \mathbb{R} . Then g is said to be of $BV^k[a,b]$ if $V_g^k[a,b]$ is finite. Also g is said to be $BV^kG(X)$ if $X = \bigcup_{j=1}^{\infty} X_j$ such that g is $BV^k(X_j)$ for each j. Clearly, g is of $BV^k[a,b]$ if there exists a positive function δ on [a,b] and $M \in \mathbb{R}$ such that $\sum_{i=0}^{n-k} |g(x_i, \cdots, x_{i+k})| < M$ for any δ^k -fine partial division $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a,b].

A property is said to hold $g^k a.e.$ if it holds everywhere in [a, b] except on set of g^k -variation zero.

THEOREM 2.2. If f = 0 $g^k a.e.$, then $(f,g) \in GR_k[a,b]$ and $\int_a^b f dg = 0$.

Proof. Let f(x) = 0 for all $x \in [a, b]$ except for a set X of g^k -variation zero and let $X_i = \{x \in X : i - 1 < |f(x)| \le i\}, i = 1, 2, \cdots$. So $X_i \subset X$ and $X = \bigcup_{i=1} X_i$, and $V_g^k(X_i) = 0$ for $i = 1, 2, \cdots$. Hence given $\epsilon > 0$, for each $i \in \mathbb{N}$, there exists $\delta_i(x) > 0$ defined on [a, b] such that $\sum_{\xi_j \in X_i} |g(x_j, \cdots, x_{j+k})| < \frac{\epsilon}{i2^i}$ for $i = 1, 2, \cdots, D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a, b]. We define $\delta(x) = \delta_i(x)$ for $x \in X_i$ and 1 otherwise. Let $D = \{[y_j, y_{j+k}], \eta_j\}_{j=0,1,\cdots,n-k}$ be a δ^k -fine partial division of [a, b]. Then

$$|s(f,g;D)| = |\sum_{\eta_j \in X} f(\eta_j)g(y_j,\cdots,y_{j+k})| < \sum_{i=1}^{\infty} \frac{\epsilon}{2^i} = \epsilon$$

Thus $(f, g) \in GR_k[a, b]$ and $\int_a^b f dg = 0$.

COROLLARY 2.3. If f is GR_k -integrable with respect to g to I on [a,b] and $f = h \ g^k a.e.$ in [a,b], then h is GR_k -integrable with respect to g to I on [a,b] and $\int_a^b f dg = \int_a^b h dg$.

We now give some convergence theorems for the GR_k -integral.

DEFINITION 2.4. Let $(f_n, g) \in GR_k[a, b]$. $\{(f_n, g)\}$ is said be equi- GR_k -integrable on [a, b] if for all $\epsilon > 0$ there exists $\delta(x) > 0, x \in [a, b]$ such that

$$|s(f_n, g; D) - \int_a^b f_n dg| < \epsilon,$$

for all n, whenever $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\dots,n-k}$ is a δ^k -fine division of [a, b].

THEOREM 2.5. Let $g \in BV^k[a, b]$. If (i) $\{(f_n, g)\}$ is said to be equi-GR_k-integrable (ii) $f_n \to f$ a.e on [a, b], then $(f, g) \in GR_k[a, b]$ and $\int_a^b f dg = \lim_{n\to\infty} \int_a^b f_n dg$.

Gwang Sik Eun and Ju Han Yoon

Proof. We may assume that $f_n(x) \to f(x)$ for each $x \in [a, b]$. Since $\{(f_n, g)\}$ is said to be equi- GR_k -integrable, for $\epsilon > 0$ there exists $\delta_1(x) > 0$ for $x \in [a, b]$ independent n such that $|s(f_n, g; D) - A_n| < \epsilon$, for all δ_1^k -fine division $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a, b] where $A_n = \int_a^b f_n dg$. Also since $g \in BV^k[a, b]$, there exists $\delta_2(x) > 0$ for $x \in [a, b]$ and M > 0 such that $\sum_{i=0}^{n-k} |g(x_i, \cdots, x_{i+k})| < M$ for any δ_2^k -fine partial division $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a, b]. Define $\delta(x) = \min\{\delta_1(x), \delta_2(x) : x \in [a, b]\}$. Let $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a, b]. Since $f_n(x) \to f(x)$ for each $x \in [a, b]$, we can find N such that $|f_n(\xi) - f(\xi)| < \frac{\epsilon}{M}$ for all $n > N_1$ and for all $\xi \in \Lambda$. So for all n > N we have $|s(f_n, g; D) - s(f, g; D)| < \epsilon$. Now for m, n > N,

$$|A_n - A_m| \leq |s(f_m, g; D) - A_m| + |s(f_m, g; D) - s(f_n, g; D)| + |s(f_n, g; D) - A_n| < 4\epsilon.$$

So $\{A_n\}$ is a Cauchy sequence. Let $A = \lim_{n \to \infty} A_n$. Then there exists K > N such that $|\int_a^b f_n dg - A| < \epsilon$ for all n > K. For all n > K, we have

$$|s(f, g; D) - A| \leq |s(f_n, g; D) - A_n| + |s(f_n, g; D) - s(f, g; D)| + |A_n - A| < 3\epsilon.$$

Thus $(f, g) \in GR_k[a, b]$ and $\int_a^b f \, dg = \lim_{n \to \infty} \int_a^b f_n \, dg$.

THEOREM 2.6. (Uniform Convergence Theorem) Let $g \in BV^k$ [a,b] and $\{f_n\}_{i=1}^{\infty}$ be a sequence of functions defined on [a,b] such that $(f_n,g) \in GR_k[a,b]$ for all $n = 1, 2, \cdots$. If $\{f_n\}$ is uniformly convergent to f as $n \to \infty$, then $(f,g) \in GR_k[a,b]$ and $\int_a^b f \, dg = \lim_{n\to\infty} \int_a^b f_n \, dg$.

Proof. Since $g \in BV^k[a, b]$, there exists $\delta_*(x) > 0$ for $x \in [a, b]$ and M > 0 such that $\sum_{i=0}^{n-k} |g(x_i, \cdots, x_{i+k})| < M$ for any δ_*^k -fine partial division $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a, b]. Let $A_n = \int_a^b f_n \, dg$ and let $\epsilon > 0$. Since $(f_n, g) \in GR_k[a, b]$ for all $n = 1, 2, \cdots$. there exists $\delta_n(x) > 0$ for $x \in [a, b]$ such that $|s(f_n, g; D_n) - A_n| < \epsilon$, for all δ_n^k -fine division $D_n = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a, b] with $\delta_n \leq \delta_*$. We may assume that $\delta_{n+1} \leq \delta_n$ for all n. Also, since $\{f_n\}$ is uniformly convergent to f, there exists N such that $\sup_{a \leq x \leq b} |f_n(x) - f_m(x)| < \frac{\epsilon}{M}$ and $\sup_{a \leq x \leq b} |f_n(x) - f(x)| < \frac{\epsilon}{M}$ for m, n > N. For m, n > N we assume that n > m, then we have

$$|A_n - A_m| \leq |A_n - s(f_n, g; D_n)| + |s(f_n, g; D_n) - s(f_m, g; D_m)| + |s(f_m, g; D_m) - A_m| < 3\epsilon$$

302

Thus $\{A_n\}$ is a Cauchy sequence in \mathbb{R} and $A = \lim_{n \to \infty} A_n$. Now we can find a positive integer $k \geq N$ such that for $n \leq k$ we have $|A_n - A| < \epsilon$. Define $\delta(x) = \delta_k(x)$ for $x \in [a, b]$. Then for any δ^k -fine division $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\cdots,n-k}$ of [a, b] we have

$$\begin{aligned} |s(f,g;D)-A| &\leq |s(f,g;D)-s(f_k,g;D)| + |s(f_k,g;D)-A_k| + |A_k-A| < 3\epsilon \\ \text{Thus } (f,g) &\in GR_k[a,b] \text{ and } \int_a^b f \, dg = \lim_{n \to \infty} f_n \, dg. \end{aligned}$$

References

 S. Pal, D. K. Ganguly and Lee Peng Yee, Henstock-Stieltjes Integrals not induced by measure, Real Analysis Exchange, 26(2) (2000/2001), 853-860, .

[2] P. Y. Lee, Lanzhou Lectures in Henstock Integral, World Scientific, 1989.

[3] J. S. Lim, J. H. Yoon, G. S. Eun, On Henstock-Stieltjes Integral, Kangweon-Kyungki Math. Jour. 6 (1998), no. 1, 87-96, .

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: eungs@chungbuk.ac.kr

**

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: jhyoon@chungbuk.ac.kr