ON CONVERGENCE FOR THE $G R_{k}$-INTEGRAL

Gwang Sik Eun* and Ju Han Yoon**

Abstract. In this paper, we study some convergence results for the $G R_{k}$-integral.

1. Introduction and preliminaries

In [1], S. Pal, D. K. Ganguly and Lee Peng Yee introduced the $G R_{k^{-}}$ integral. It is a Stieltjes type integral which for $k=1$ includes classical Henstock Stieltjes integral in particular case. In [1], some elementary results for the $G R_{k}$-integral and also analogue of the Saks-Henstone lemma are studied.

In this paper, we obtain some convergence results for the $G R_{k}$-integral.
Let k be a fixed positive integer and δ be a positive function defined on $[a, b]$. We shall have a division D of $[a, b]$ given by $a=x_{0}<x_{1}<$ $\cdots<x_{n}=b$ with associated points $\left\{\xi_{0}, \xi_{1}, \cdots, \xi_{n-k}\right\}$ satisfying
$\xi_{i} \in\left[x_{i}, x_{i+k}\right] \subset\left(\xi_{i}-\delta\left(\xi_{i}\right), \xi_{i}+\delta\left(\xi_{i}\right)\right)$ for $i=0,1, \cdots, n-k$
a δ^{k}-fine division of $[a, b]$. For a given positive δ, we denote a δ^{k}-fine division D by $\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$. When $k=1$, it coincides with the usual definition of δ-fine division.

In [1], the $G R_{k}$-integral is defined as follows:
Definition 1.1. Let g be real-valued function defined on a closed interval $[a, b]^{k+1}$ in the $(k+1)$-dimensional space, and f a real-valued function defined on $[a, b]$. We say that f is $G R_{k}$-integrable with respect to g to I on $[a, b]$ if for every $\epsilon>0$ there is a function $\delta(\xi)>0$ for

[^0]$\xi \in[a, b]$ such that for any δ^{k}-fine division $D=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ we have
$$
\left|\sum_{i=0}^{n-k} f\left(\xi_{i}\right) g\left(x_{i}, \cdots, x_{i+k}\right)-I\right|<\epsilon
$$

We shall denote the above Riemann sum by $s(f, g ; D)$. If f is integrable with respect to g in the above sense, we write $(f, g) \in G R_{k}[a, b]$ and denote the integral by $\int_{a}^{b} f d g$.

Let $x \in\left[x_{i}, x_{i+k}\right]$ where $x_{i}<x_{i+1}<\cdots<x_{i+k}$. The jump of g at x, denoted by $J(g ; x)$, is defined by

$$
J(g ; x)=\lim _{x_{i} \rightarrow x, x_{i+k} \rightarrow x} g\left(x_{i}, \cdots, x_{i+k}\right)
$$

if the limit exists finitely.
Let $\left[a_{i}, b_{i}\right], i=1,2, \cdots, p$ be pairwise non-overlapping, and $\cup_{i=1}^{p}\left[a_{i}, b_{i}\right]$ $\subset[a, b]$. Then $\left\{D_{i}\right\}_{i=1,2, \cdots, p}$ is said to be a δ^{k}-fine partial division of $[a, b]$ if each D_{i} is a δ^{k}-fine division of $\left[a_{i}, b_{i}\right]$. Its corresponding partial Riemann sum is given by $\sum_{i=1}^{p} s\left(f, g ; D_{i}\right)$.

With this notion of partial division we have proved in [1] the following theorem.

Theorem 1.2 (Saks-Henstone lemma analogue for $G R_{k}$-integral). If $(f, g) \in G R_{k}[a, b]$ and $J(g ; c)$ exists for all $c \in(a, b)$, then for every $\epsilon>0$ there exists a positive function δ on $[a, b]$ such that for any δ^{k}-fine partial division $\left\{D_{i}\right\}_{i=1,2, \cdots, p}$ of $[a, b]$

$$
|s(f, g ; D)-F(a, b)|<\epsilon \text { and }\left|\sum_{i=1}^{p}\left\{s\left(f, g ; D_{i}\right)-F\left(a_{i}, b_{i}\right)\right\}\right|<(k+1) \epsilon
$$

where D_{i} is a δ^{k}-fine division of $\left[a_{i}, b_{i}\right]$ and $F(u, v)$ denotes the $G R_{k^{-}}$ integral on $[u, v] \subset[a, b]$.

2. Some results of convergence theorems for $G R_{k}$-integral

Definition 2.1. For $X \subset[a, b]$, we define

$$
V_{g}^{k}(X)=\inf _{\delta} \sup _{D} \sum_{\xi_{i} \in X}\left|g\left(x_{i}, \cdots, x_{i+k}\right)\right|
$$

where supremum is taken over all δ^{k}-fine partial division $D=\left\{\left[x_{i}, x_{i+k}\right]\right.$, $\left.\xi_{i}\right\}_{i=0,1, \cdots, n-k}$ with $\xi_{i} \in X$.
$X \subset[a, b]$ is said to be of g^{k}-variation zero if $V_{g}^{k}(X)=0$. Let g be a function from $[a, b]^{k+1}$ to \mathbb{R}. Then g is said to be of $B V^{k}[a, b]$ if $V_{g}^{k}[a, b]$ is finite. Also g is said to be $B V^{k} G(X)$ if $X=\cup_{j=1}^{\infty} X_{j}$ such that g is $B V^{k}\left(X_{j}\right)$ for each j. Clearly, g is of $B V^{k}[a, b]$ if there exists a positive function δ on $[a, b]$ and $M \in \mathbb{R}$ such that $\sum_{i=0}^{n-k}\left|g\left(x_{i}, \cdots, x_{i+k}\right)\right|<M$ for any δ^{k}-fine partial division $D=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$.

A property is said to hold g^{k} a.e. if it holds everywhere in $[a, b]$ except on set of g^{k}-variation zero.

Theorem 2.2. If $f=0 g^{k}$ a.e., then $(f, g) \in G R_{k}[a, b]$ and $\int_{a}^{b} f d g=$ 0.

Proof. Let $f(x)=0$ for all $x \in[a, b]$ except for a set X of g^{k} variation zero and let $X_{i}=\{x \in X: i-1<|f(x)| \leq i\}, i=1,2, \cdots$. So $X_{i} \subset X$ and $X=\cup_{i=1} X_{i}$, and $V_{g}^{k}\left(X_{i}\right)=0$ for $i=1,2, \cdots$. Hence given $\epsilon>0$, for each $i \in \mathbb{N}$, there exists $\delta_{i}(x)>0$ defined on $[a, b]$ such that $\sum_{\xi_{j} \in X_{i}}\left|g\left(x_{j}, \cdots, x_{j+k}\right)\right|<\frac{\epsilon}{i 2^{i}}$ for $i=1,2, \cdots, D=$ $\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$. We define $\delta(x)=\delta_{i}(x)$ for $x \in X_{i}$ and 1 otherwise. Let $D=\left\{\left[y_{j}, y_{j+k}\right], \eta_{j}\right\}_{j=0,1, \cdots, n-k}$ be a δ^{k}-fine partial division of $[a, b]$. Then

$$
|s(f, g ; D)|=\left|\sum_{\eta_{j} \in X} f\left(\eta_{j}\right) g\left(y_{j}, \cdots, y_{j+k}\right)\right|<\sum_{i=1}^{\infty} \frac{\epsilon}{2^{i}}=\epsilon
$$

Thus $(f, g) \in G R_{k}[a, b]$ and $\int_{a}^{b} f d g=0$.
Corollary 2.3. If f is $G R_{k}$-integrable with respect to g to I on $[a, b]$ and $f=h g^{k}$ a.e. in $[a, b]$, then h is $G R_{k}$-integrable with respect to g to I on $[a, b]$ and $\int_{a}^{b} f d g=\int_{a}^{b} h d g$.
We now give some convergence theorems for the $G R_{k}$-integral.
DEfinition 2.4. Let $\left(f_{n}, g\right) \in G R_{k}[a, b] .\left\{\left(f_{n}, g\right)\right\}$ is said be equi$G R_{k}$-integrable on $[a, b]$ if for all $\epsilon>0$ there exists $\delta(x)>0, x \in[a, b]$ such that

$$
\left|s\left(f_{n}, g ; D\right)-\int_{a}^{b} f_{n} d g\right|<\epsilon
$$

for all n, whenever $D=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1 \cdots, n-k}$ is a δ^{k}-fine division of $[a, b]$.

Theorem 2.5. Let $g \in B V^{k}[a, b]$. If (i) $\left\{\left(f_{n}, g\right)\right\}$ is said to be equi$G R_{k}$-integrable (ii) $f_{n} \rightarrow f$ a.e on $[a, b]$, then $(f, g) \in G R_{k}[a, b]$ and $\int_{a}^{b} f d g=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d g$.

Proof. We may assume that $f_{n}(x) \rightarrow f(x)$ for each $x \in[a, b]$. Since $\left\{\left(f_{n}, g\right)\right\}$ is said to be equi- $G R_{k}$-integrable, for $\epsilon>0$ there exists $\delta_{1}(x)>$ 0 for $x \in[a, b]$ independent n such that $\left|s\left(f_{n}, g ; D\right)-A_{n}\right|<\epsilon$, for all δ_{1-}^{k} fine division $D=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$ where $A_{n}=\int_{a}^{b} f_{n} d g$. Also since $g \in B V^{k}[a, b]$, there exists $\delta_{2}(x)>0$ for $x \in[a, b]$ and $M>0$ such that $\sum_{i=0}^{n-k}\left|g\left(x_{i}, \cdots, x_{i+k}\right)\right|<M$ for any δ_{2}^{k}-fine partial division $D=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$. Define $\delta(x)=\min \left\{\delta_{1}(x), \delta_{2}(x):\right.$ $x \in[a, b]\}$. Let $D=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$ be a δ^{k}-fine division of $[a, b]$ and let $\Lambda=\left\{\xi_{i}: 0 \leq i \leq n-k\right\}$. Since $f_{n}(x) \rightarrow f(x)$ for each $x \in[a, b]$, we can find N such that $\left|f_{n}(\xi)-f(\xi)\right|<\frac{\epsilon}{M}$ for all $n>N_{1}$ and for all $\xi \in \Lambda$. So for all $n>N$ we have $\left|s\left(f_{n}, g ; D\right)-s(f, g ; D)\right|<\epsilon$. Now for $m, n>N$,

$$
\begin{aligned}
\left|A_{n}-A_{m}\right| \leq & \left|s\left(f_{m}, g ; D\right)-A_{m}\right|+\left|s\left(f_{m}, g ; D\right)-s\left(f_{n}, g ; D\right)\right| \\
& +\left|s\left(f_{n}, g ; D\right)-A_{n}\right|<4 \epsilon
\end{aligned}
$$

So $\left\{A_{n}\right\}$ is a Cauchy sequence. Let $A=\lim _{n \rightarrow \infty} A_{n}$. Then there exists $K>N$ such that $\left|\int_{a}^{b} f_{n} d g-A\right|<\epsilon$ for all $n>K$. For all $n>K$, we have

$$
\begin{aligned}
|s(f, g ; D)-A| \leq & \left|s\left(f_{n}, g ; D\right)-A_{n}\right|+\left|s\left(f_{n}, g ; D\right)-s(f, g ; D)\right| \\
& +\left|A_{n}-A\right|<3 \epsilon .
\end{aligned}
$$

Thus $(f, g) \in G R_{k}[a, b]$ and $\int_{a}^{b} f d g=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d g$.
Theorem 2.6. (Uniform Convergence Theorem) Let $g \in B V^{k}$ $[a, b]$ and $\left\{f_{n}\right\}_{i=1}^{\infty}$ be a sequence of functions defined on $[a, b]$ such that $\left(f_{n}, g\right) \in G R_{k}[a, b]$ for all $n=1,2, \cdots$. If $\left\{f_{n}\right\}$ is uniformly convergent to f as $n \rightarrow \infty$, then $(f, g) \in G R_{k}[a, b]$ and $\int_{a}^{b} f d g=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d g$.

Proof. Since $g \in B V^{k}[a, b]$, there exists $\delta_{*}(x)>0$ for $x \in[a, b]$ and $M>0$ such that $\sum_{i=0}^{n-k}\left|g\left(x_{i}, \cdots, x_{i+k}\right)\right|<M$ for any δ_{*}^{k}-fine partial division $D=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$. Let $A_{n}=\int_{a}^{b} f_{n} d g$ and let $\epsilon>0$. Since $\left(f_{n}, g\right) \in G R_{k}[a, b]$ for all $n=1,2, \cdots$. there exists $\delta_{n}(x)>0$ for $x \in[a, b]$ such that $\left|s\left(f_{n}, g ; D_{n}\right)-A_{n}\right|<\epsilon$, for all $\delta_{n^{-}}^{k}$ fine division $D_{n}=\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$ with $\delta_{n} \leq \delta_{*}$. We may assume that $\delta_{n+1} \leq \delta_{n}$ for all n. Also, since $\left\{f_{n}\right\}$ is uniformly convergent to f, there exists N such that $\sup _{a \leq x \leq b}\left|f_{n}(x)-f_{m}(x)\right|<\frac{\epsilon}{M}$ and $\sup _{a \leq x \leq b}\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{M}$ for $m, n>N$. For $m, n>N$ we assume that $n>m$, then we have

$$
\begin{gathered}
\left|A_{n}-A_{m}\right| \leq\left|A_{n}-s\left(f_{n}, g ; D_{n}\right)\right|+\left|s\left(f_{n}, g ; D_{n}\right)-s\left(f_{m}, g ; D_{m}\right)\right| \\
+\left|s\left(f_{m}, g ; D_{m}\right)-A_{m}\right|<3 \epsilon
\end{gathered}
$$

Thus $\left\{A_{n}\right\}$ is a Cauchy sequence in \mathbb{R} and $A=\lim _{n \rightarrow \infty} A_{n}$. Now we can find a positive integer $k \geq N$ such that for $n \leq k$ we have $\left|A_{n}-A\right|<\epsilon$. Define $\delta(x)=\delta_{k}(x)$ for $x \in[a, b]$. Then for any δ^{k}-fine division $D=$ $\left\{\left[x_{i}, x_{i+k}\right], \xi_{i}\right\}_{i=0,1, \cdots, n-k}$ of $[a, b]$ we have
$|s(f, g ; D)-A| \leq\left|s(f, g ; D)-s\left(f_{k}, g ; D\right)\right|+\left|s\left(f_{k}, g ; D\right)-A_{k}\right|+\left|A_{k}-A\right|<3 \epsilon$
Thus $(f, g) \in G R_{k}[a, b]$ and $\int_{a}^{b} f d g=\lim _{n \rightarrow \infty} f_{n} d g$.

References

[1] S. Pal, D. K. Ganguly and Lee Peng Yee, Henstock-Stieltjes Integrals not induced by measure, Real Analysis Exchange, 26(2) (2000/2001), 853-860, .
[2] P. Y. Lee, Lanzhou Lectures in Henstock Integral, World Scientific, 1989.
[3] J. S. Lim, J. H. Yoon, G. S. Eun, On Henstock-Stieltjes Integral, KangweonKyungki Math. Jour. 6 (1998), no. 1, 87-96, .
*
Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: eungs@chungbuk.ac.kr
**
Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: jhyoon@chungbuk.ac.kr

[^0]: Received March 03, 2010; Accepted April 23, 2010.
 2010 Mathematics Subject Classification: Primary 26A39; Secondary $28 B 05$.
 Key words and phrases: $G R_{k}$-integral, $G R_{k}$-integrable.
 Correspondence should be addressed to Gwang Sik Eun, eungs@chungbuk.ac.kr.
 *This work was supported by the research grant of the Chungbuk National University in 2009.

