JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 2, June 2010

ON FUZZY SUBHYPERNEAR-RINGS OF HYPERNEAR-RINGS WITH *t*-NORMS

Jong Geol Lee* and Kyung Ho Kim**

ABSTRACT. In this paper, we investigate some properties of T-fuzzy subhypernear-rings of a hypernear-ring.

1. Introduction

The theory of hyperstructures has been introduced by Marty in 1934 during the 8th congress of the Scandinavian Mathematicians [16]. Marty introduced the notion of a hypergroup and then many researchers have been worked on this new field of modern algebra and developed it. A comprehensive review of the theory of hyperstructures appear [5] and [20]. The notion of the hyperfield and hyperring was studied by Krasner [14]. In [6], Dasic has introduced the notion of hypernear-rings generalizing the concept of near-ring [17]. In [11], Gontineac defined the zero-symmetric part and the constant part of a hypernear-ring and introduced a structure theorem and other properties of hypernear-rings. Davvaz in [8] introduced the notion of an H_v -near ring generalizing the notion of hypernear-ring.

In [7], Davvaz has introduced the concept of fuzzy subhypernearrings and fuzzy hyperideals of a hypernear-ring which are a generalization of the concept of a fuzzy subnear-rings and fuzzy ideals in a near-ring. Now, in this paper, we investigate some properties of T-fuzzy subhypernear-rings In this paper, we investigate some properties of Tfuzzy subhypernear-rings of a hypernear-ring.

2010 Mathematics Subject Classification: Primary 06F35, 03G25, 03E72.

Received January 11, 2010; Accepted April 23, 2010.

Key words and phrases: hypernear-ring, subhypernear-ring, T-fuzzy subhypernear-ring, uniformity, uniform space.

Correspondence should be addressed to Kyung Ho Kim, ghkim@cjnu.ac.kr.

2. Preliminaries

Let H be a non-empty set. A hyperoperation * on H is a mapping of $H \times H$ into the family of non-empty subsets of H.

A hypernear-ring is an algebraic structure $(R, +, \cdot)$ which satisfies the following axioms:

(1) (R, +) is a hypergroup i.e., in (R, +) the following hold:

- (i) x + (y + z) = (x + y) + z for all $x, y, z \in R$;
- (ii) There is $0 \in R$ such that x + 0 = 0 + x = x for all $x \in R$;
- (iii) For every $x \in R$ there exists one and only one $x' \in R$ such that $0 \in x + x'$, (we shall write -x for x' and we call it the opposite of x);

(iv) $z \in x + y$ implies $y \in -x + z$ and $x \in z - y$.

If $x \in R$ and A, B are subsets of R, then by A + B, A + x and x + B we mean

$$A + B = \bigcup_{\substack{a \in A \\ b \in B}} a + b, A + x = A + \{x\}, \ x + B = \{x\} + B.$$

(2) With respect to the multiplication, (R, \cdot) is a semigroup having absorbing element 0 i.e., $x \cdot 0 = 0$ for all $x \in R$.

(3) The multiplication is distributive with respect to the hyperoperation + on the left side i.e., $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

Note that for all $x, y \in R$, we have -(-x) = x, 0 = -0, -(x + y) = -y - x and x(-y) = -xy.

Let $(R, +, \cdot)$ be a hypernear-ring. A non-empty subset H of R is a subhypernear-ring if

- (1) (H, +) is a subhypergroup of (R, +), i.e., $a, b \in H$ implies $a + b \subseteq H$, and $a \in H$ implies $-a \in H$,
- (2) $ab \in H$ for all $a, b \in H$.

EXAMPLE 2.1. Consider hypernear-ring $R = \{0, a, b\}$ with two binary operations as follows:

+	0	a	b	•	$0 \ a \ b$
0	$\{0\}$	$\{a\} \\ \{0, a, b\} \\ \{a, b\}$	$\{b\}$	0	0 0 0
a	$\{a\}$	$\{0, a, b\}$	$\{a, b\}$	a	$egin{array}{ccc} 0 & a & b \ 0 & a & b \end{array}$
$b \mid$	$\{b\}$	$\{a,b\}$	$\{0, a, b\}$	b	$0 \ a \ b$

Then $(R, +, \cdot)$ is a hypernear-ring and $\{0\}$ and R are subhypernear-rings of R.

A fuzzy subset μ in a set R is a function $\mu : R \to [0, 1]$ and $\text{Im}(\mu)$ denote the *image set* of μ .

DEFINITION 2.2. Let $(R, +, \cdot)$ be a hypernear-ring and μ a fuzzy subset of R. We say that μ is a *fuzzy subhypernear-ring* of R if

- (H1) $\min\{\mu(x), \mu(y)\} \le \inf_{\alpha \in x+y} \{\mu(\alpha)\}$ for all $x, y \in R$,
- (H2) $\mu(x) \le \mu(-x)$,
- (H3) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in R$.

DEFINITION 2.3. ([5]) By a *t*-norm T, we mean a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

- $(T1) \quad T(x,1) = x,$
- (T2) $T(x,y) \le T(x,z)$ if $y \le z$,
- (T3) T(x,y) = T(y,x),
- (T4) T(x, T(y, z)) = T(T(x, y), z),
- for all $x, y, z \in [0, 1]$.

For a *t*-norm *T* on [0, 1], denote by Δ_T the set of element $\alpha \in [0, 1]$ such that $T(\alpha, \alpha) = \alpha$, i.e., $\Delta_T := \{\alpha \in [0, 1] \mid T(\alpha, \alpha) = \alpha\}.$

PROPOSITION 2.4. Every t-norm T has a useful property:

$$T(\alpha,\beta) \le \min(\alpha,\beta)$$

for all $\alpha, \beta \in [0, 1]$.

DEFINITION 2.5. Let T be a t-norm. A fuzzy subset μ of R is said to satisfy *idempotent property* if $\text{Im}(\mu) \subseteq \Delta_T$.

3. Fuzzy subhypernear-rings of hypernear-rings with *t*-norms

DEFINITION 3.1. Let $(R, +, \cdot)$ be a hypernear-ring and μ a fuzzy subset of R. We say that μ is a fuzzy subhypernear-ring of R with respect to t-norm T (briefly, a T-fuzzy subhypernear-ring of R) if

 $\begin{array}{ll} (\mathrm{TH1}) \ T(\mu(x),\mu(y)) \leq \inf_{\alpha \in x+y} \{\mu(\alpha)\} \ \text{for all } x,y \in R, \\ (\mathrm{TH2}) \ \mu(x) \leq \mu(-x), \\ (\mathrm{TH3}) \ \mu(xy) \geq T(\mu(x),\mu(y)) \ \text{for all } x,y \in R. \end{array}$

EXAMPLE 3.2. Let $R = \{0, a, b, c\}$ be a set with a hyperoperation "+" and a binary operation "·" as follows:

+	0	a	b	С	•	$0 \ a \ b \ c$
0	{0}	$\{a\}$	$\{b\}$	$\{c\}$	0	0 a b c
a	$\{a\}$	$\{0, a\}$	$\{b\}$	$\{c\}$	a	$0 \ a \ b \ c$
b	$\{b\}$	$\{b\}$	$\{0, a, c\}$	$\{b, c\}$		$0 \ a \ b \ c$
c	$\{c\}$	$\{c\}$	$\{b,c\}$	$\{0, a, b\}$	c	$0 \ a \ b \ c$

Then $(R, +, \cdot)$ is a hypernear-ring. We define a fuzzy set μ in R by

$$\mu(0) = 0.7, \mu(a) = 0.5$$
 and $\mu(b) = \mu(c) = 0.3$.

Let $T: [0,1] \times [0,1] \rightarrow [0,1]$ be a function defined by

$$T(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$$
 for all $\alpha, \beta \in [0, 1]$

which is a *t*-norm. Routine calculations give that μ is a *T*-fuzzy subhypernearring of *R*.

PROPOSITION 3.3. Let μ be an idempotent *T*-fuzzy subhypernearring of a hypernear-ring *R*. Then $\mu(x) \leq \mu(0)$ for all $x \in R$.

Proof. For any $x \in R$, we have

$$\mu(0) \ge \inf_{\alpha \in x-x} \mu(\alpha) \ge T(\mu(x), \mu(-x)) \ge T(\mu(x), \mu(x)) = \mu(x).$$

PROPOSITION 3.4. Let T be an t-norm. If μ is an idempotent T-fuzzy subhypernear-ring of hyper near-ring R, then the set

$$R^{\omega} = \{ x \in R \mid \mu(x) \ge \mu(\omega) \}$$

is a subhypernear-ring of a hyper near-ring R.

Proof. Let $x, y \in R^{\omega}$. Then $\mu(x) \ge \mu(\omega)$ and $\mu(y) \ge \mu(\omega)$. Since μ is an *T*-fuzzy subhypernear-ring of *R*, it follows that

$$\inf_{\alpha \in x+y} \{\mu(\alpha)\} \ge T(\mu(x), \mu(y)) \ge T(\mu(x), \mu(\omega)) \ge T(\mu(\omega), \mu(\omega)) = \mu(\omega).$$

Hence $x + y \subseteq R^{\omega}$ implies $x + y \in \mathcal{P}^*(R^{\omega})$. Let $x \in R^{\omega}$. Then we have $\mu(x) \ge \mu(\omega)$, and so $\mu(-x) \ge \mu(x) \ge \mu(\omega)$. Thus we have $-x \in \overline{R}^{\omega}$. Let $x, y \in R^{\omega}$. Then we get $\mu(xy) \ge T(\mu(x), \mu(y)) \ge T(\mu(\omega), \mu(\omega)) = \mu(\omega)$, and so $xy \in R^{\omega}$. This completes the proof. \Box

COROLLARY 3.5. Let T be an t-norm. If μ is an idempotent T-fuzzy subhypernear-ring of R, then the set

$$R^{\mu} = \{ x \in R \mid \mu(x) = \mu(0) \}$$

is a subhypernear-ring of a hyper near-ring R.

Proof. From the Corollary 3.3, $R^{\mu} = \{x \in R \mid \mu(x) = \mu(0)\} = \{x \in R \mid \mu(x) \ge \mu(0)\}$, hence R^{μ} is a subhypernear-ring of a hyper near-ring R from the Prosition 3.4.

LEMMA 3.6. ([1]) Let T be a t-norm. Then

$$T(T(\alpha, \beta), T(\gamma, \delta)) = T(T(\alpha, \gamma), T(\beta, \delta))$$

for all $\alpha, \beta, \gamma, \delta \in [0, 1]$.

PROPOSITION 3.7. If μ and ν are *T*-fuzzy subhypernear-rings of a hypernear-ring *R*, then $\mu \wedge \nu : R \to [0, 1]$ defined by

$$(\mu \wedge \nu)(x) = T(\mu(x), \nu(x))$$

for all $x \in R$ is a T-fuzzy subhypernear-ring of R.

Proof. Let $x, y \in R$. Then we have

$$\begin{split} \inf_{\alpha \in x+y} \{(\mu \wedge \nu)(\alpha)\} &= \inf_{\alpha \in x+y} \{T(\mu(\alpha), \nu(\alpha))\} \\ &\geq T(\inf_{\alpha \in x+y} \{\mu(\alpha)\}, \inf_{\alpha \in x+y} \{\nu(\alpha)\}) \\ &\geq T(T(\mu(x), \mu(y)), T(\nu(x), \nu(y))) \\ &= T(T(\mu(x), \nu(x)), T(\mu(y), \nu(y))) \\ &= T((\mu \wedge \nu)(x), (\mu \wedge \nu)(y)) \end{split}$$

and

$$(\mu \wedge \nu)(-x) = T(\mu(-x), \nu(-x)) \ge T(\mu(x), \nu(x))$$
$$= (\mu \wedge \nu)(x)$$

since $\mu(-x) \ge \mu(x)$ and $\nu(-x) \ge \nu(x)$. Also, for $x, y \in R$, we have $(\mu \land \nu)(xy) = T(\mu(xy), \nu(xy))$ $= T(T(\mu(x), \mu(y)), T(\nu(x), \nu(y)))$ $\ge T(T(\mu(x), \nu(x)), T(\mu(y), \nu(y)))$ $= T((\mu \land \nu)(x), (\mu \land \nu)(y))$

This completes the proof.

PROPOSITION 3.8. Let H be a non-empty subset of a hypernear-ring R and let μ be a fuzzy set in R defined by

$$\mu(x) := \begin{cases} t_1 & \text{if } x \in H \\ t_2 & \text{otherwise,} \end{cases}$$

where $t_1 > t_2$ in [0,1]. Then μ is an idempotent *T*-fuzzy subhypernearring of *R* if and only if *H* is a subhypernear-ring of *R*.

Proof. Suppose that μ is an idempotent T-fuzzy subhypernear-ring of R. Let $x, y \in H$. Then $\inf_{\alpha \in x+y} \mu(\alpha) \geq T(\mu(x), \mu(y)) = t_1$ and so $\inf_{\alpha \in x+y} \mu(\alpha) \geq t_1$. It follows that $x + y \subseteq H$. Next, let $x \in H$. Then we have $t_1 = \mu(x) \leq \mu(-x)$, and so $\mu(-x) = t_1$, that is, $-x \in H$. Next, we have $\mu(xy) \geq T(\mu(x), \mu(y)) \geq t_1$, and so $\mu(xy) = t_1$. Hence $xy \in H$ and therefore H is a subhypernear-ring of R. Conversely suppose that H is a subhypernear-ring of R. Let $x, y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\mu(x) = t_2$ or $\mu(y) = t_2$ and so

$$\inf_{\alpha \in x+y} \mu(\alpha) \ge t_2 = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$$

and $\mu(xy) \ge t_2 = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$. Assume that $x \in H$ and $y \in H$. Then $x + y \subseteq H$ and hence

$$\inf_{x \in x+y} \mu(\alpha) = t_1 = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$$

and $\mu(xy) = t_1 = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$. Since $x \in H$, we obtain $-x \in H$, which implies $\mu(x) \le \mu(-x)$. Consequently μ is a *T*-fuzzy subhypernear-ring of *R*.

References

- M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Sys, 24, (1987), 79-86.
- [2] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Sys. 44, (1991), 139-146.
- [3] R. Ameri and M. M. Zahedi, *T-fuzzy hyperalgebraic systems*, AFSS 2002, LNAI 2275, (2002), 509-514.
- [4] J.M. Anthony and H. Shewood, Fuzzy groups redifined, 69 (1979), 124-130.
- [5] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advanced in Mathematics, Vol. 5, Klower Academic Publishers, 2003.
- [6] V. Dasic, *Hypernear-rings*, Proceedings of the Forth International Congress on A. H. A., Xanthi, Greece, World Scientific, (1990), 75-85.
- [7] B. Davvaz, On hypernear-rings and fuzzy hyperideals, The Journal of Fuzzy Mathematics, 7 (1999), no. 3, 745-753.
- [8] B. Davvaz, H_v-Near-Rings, Math. Japonica, **52** (2000), no. 2, 387-392.

243

- [9] B. Davvaz, T-fuzzy H_v -subrings of an H_v -ring, The Journal of Fuzzy Mathematics, 11 (2003), no. 1, 215-224.
- [10] B. Davvaz, Fuzzy R-subgroups with thresholds of near-ings and implication operators, Soft Computing (to appear)
- [11] V. M. Gontineac, On hypernear-rings and H-hypergroups, Proceedings of the Forth International Congress on A. H. A. 1993, Hadronic Press, Inc., USA, (1994), 171-179.
- [12] K. H. Kim, B. Davvaz and E. H. Roh, On Hyper R-subgroups of Hypernearrings, Scientiae Mathematicae Japoniciae (submitted).
- [13] K. H. Kim, B. Davvaz and E. H. Roh, On fuzzy hyper R-subgroups of hypernearrings, Italian Journal of Pure and Applied Mathematics, 20 (2006), 177-192.
- [14] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci. 2 (1983), 307-312.
- [15] O. Kazanci, S. Yamark and S. Yilmaz, On intuitionistic Q-fuzzy R-subgroups of Near-rings, International Mathematical Forum, 2 (No. 59) (2007), 2899-2910.
- [16] F. Matry, Sur une generalization de la notion de groupe, 8^{iem} congress Math. Scandenaves, Stoockholm, (1934), 45-49.
- [17] G. Pllz, Near-rings, North-Holland Publ., Co, 1977.
- [18] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
- [19] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.
- [20] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc. 115, Palm Harber, USA, 1994.
- [21] S. Willard, General Topology, Addison-Wesley Publ., USA, 1970.
- [22] Y. H. Yon, On intuitionistic fuzzy R-subgroups of near-rings, Soochow Journal of Mathematics 27 (3), (2001), 243-253.
- [23] L. Zadeh, Fuzzy sets, Inform. and Contral 8, (1965), 338-353.

*

Department of Mathematics Chungju National University Chungju 380-702, Republic of Korea *E-mail*: jglee@cjnu.ac.kr

**

Department of Mathematics Chungju National University Chungju 380-702, Republic of Korea *E-mail*: ghkim@cjnu.ac.kr