Role of Water Current in the CROM Operation for the Water Quality Improvement of Eutrophic Reservoir

부영양 저수지의 수질개선을 위한 CROM 운영 및 유속의 영향

  • Lee, Ju-Hwan (Department of Environmental Science, Konkuk University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University) ;
  • Kim, Baik-Ho (Department of Environmental Science, Konkuk University)
  • 이주환 (건국대학교 환경과학과) ;
  • 황순진 (건국대학교 환경과학과) ;
  • 김백호 (건국대학교 환경과학과)
  • Received : 2010.01.26
  • Accepted : 2010.03.16
  • Published : 2010.05.30

Abstract

Continuous removal of organic matters (CROM) using freshwater bivalve Anodonta woodiana was operated to evaluate the effect of water current on the water quality improvement (clearance) of eutrophic lake. The CROM system comprised three treatment steps such as flow control, treatment and analysis, and operated at the two different currents ($24L\;h^{-1}$ and $48L\;h^{-1}$) with mussels at density of $312.5indiv.\;m^{-2}$ for 12 consecutive days. Water quality including suspended solids (SS) and chlorophyll-a (Chl-a) was daily measured at the same time. Results indicate that although both the system strongly decreased the concentration of SS and chl-a, a slow CROM system was more effective to diminish the SS contents than a fast CROM system; 82% and 66%, respectively (ANOVA, P<0.0001). Clearance rates, based on chl-a, were also significantly higher in a slow system than a fast system (ANOVA, P<0.0001), although the mussel mortality was conversely. In both systems, there showed a remarkable excretion of dissolved inorganic nutrients (i.e. $NH_3-N$ and $PO_4-P$), while a slow CROM system was higher than a fast system, significantly (ANOVA, P<0.0001). Therefore, it may suggest that a slow current CROM system is more suitable to maximize the efficacy of water quality improvement, but further study is needed to diminish the mortality of mussel and to reuse the nutrient released during the operation.

Keywords

References

  1. 권오길, 최준길(1982). 의암호의 패류에 관한 연구 (2) 의암호의 패류상과 어류의 패류내 산란에 관한 연구. 한국육수학회지, 15, pp. 39-50.
  2. 김백호, 정승원, 서종근, 서미연, 한명수(2005). 살조세균 적용이 식물플랑크톤 군집과 조류독소 분포에 미치는 영향. 한국하천호수학회지, 38, pp. 261-270.
  3. 김백호, 백순기, 황수옥, 황순진(2009a). 담수산 이매패 펄조개를 이용한 흐름형 유기물 제어(CROM) 운영-퇴적물의 영향. 한국하천호수학회지, 42, pp. 161-171.
  4. 김백호, 이주환, 김용재, 황수옥, 황순진(2009b). 포천천 수질개선을 위한 패류의 이용 하천형 유기물 제어(S-CROM) 기술의 적용. 한국하천호수학회지, 42, pp. 317-330.
  5. 김호섭, 박정환, 공동수, 황순진(2004). 참채첩을 이용한 부영양호의 수질개선. 한국하천호수학회지, 37, pp. 332-343.
  6. 이주환, 황순진, 박선구, 황수옥, 유춘만, 김백호(2009). CROM를 이용한 부영양 저수지의 유기물 제어: 이매패의 종특이성에 대하여. 한국하천호수학회지, 42, pp. 350-363.
  7. 정의영, 신윤경, 최문술(1997). 새만금호의 수질예측과 그에 따른 대책 I. 환경 오염원이 참재첩(Corbicula leana)의 여수작용 및 산소소비에 미치는 영향. 한국패류학회지, 13, pp. 203-210.
  8. 황순진, 김호섭, 최광현, 박정환, 신재기(2002). 국내 담수산 조개의 섭식활동이 호수 수질에 미치는 영향. 한국하천호수학회지, 35, pp. 92-102.
  9. 황순진, 박구성, 백순기, 김백호(2010). 부영양 저수지에서 국내 담수산 패류가 수질에 미치는 영향. 수질보전 한국물환경학회지, 26, pp. 148-155.
  10. APHA (1995). Standards methods for the examination of water and wastewater (19th ed). American Public Health Association, Washington, D.C.
  11. Ackerman. J. D. and Nishizaki, M. T. (2004). The effect of velocity on the suspension feeding and growth of the marine mussels Mytilus trossulus and M. californianus: implications for niche separation. J. Mar. Sys., 49, pp. 195-207. https://doi.org/10.1016/j.jmarsys.2003.06.004
  12. Burton, R. F. (1983). Ionic regulation and water balance. pp. 291-352. In: the mollusca, A. S. M. Saleuddin and K. M. Wilbur (eds.), Academic Press, New York.
  13. Cole, B. E., Thompson, J. K., and Cloern, J. E. (1992). Measurement of filtration rates by infaunal bivalves in a recirculating flume. Mar. Biol., 113, pp. 219-225.
  14. Coughlan, J. (1969). The estimation of filtration rates from the clearance of suspensions. Mar. Biol., 2, pp. 256-258.
  15. Dorgelo, J. and Smeenk, J. W. (1988). Contribution to the ecophysiology of Dreissena polymorpha (Pallas) (Mollusca: Bivalvia): Growth, filtration rate and respiration. Verh. Internat. Verein. Limnol., 23, pp. 2202-2208.
  16. Fanslow, D. L., Nalepa, T. F., and Lang, G. A. (1995). Filtration rates of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. J. Great Lakes. Res., 21, pp. 489-500 https://doi.org/10.1016/S0380-1330(95)71061-9
  17. Fukushima, M., Takamura, N., Sun, L., Nakagawa, M., Matsushige, K., and Xie, P. (1999). Changes in plankton community following introduction of filter-feeding planktivorous fish. Freshwater Biol., 42, pp. 719-736. https://doi.org/10.1046/j.1365-2427.1999.00507.x
  18. Grizzle, R. E., Langan, R., and Howell, W. H. (1992). Growth responses of suspension-feeding bivalve mollusks to changes in water flow: differences between siphonate and nonsiphonate taxa. J. Exp. Mar. Biol. Ecol., 162, pp. 213-228. https://doi.org/10.1016/0022-0981(92)90202-L
  19. Heath, R. T., Fahnenstiel, G. L., Gardner, W. S., Cavaletto, J. F., and Hwang, S. J. (1995). Ecosystem-level effects of zebra mussel (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. J. Great Lakes Res., 21, pp. 501-516. https://doi.org/10.1016/S0380-1330(95)71062-0
  20. Heckey, R. E. and Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr., 33, pp. 796-822. https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  21. Hwang, S. J. (1996). Effects of zebra mussel (Dreissena polymorpha) on phytoplankton and bacterioplankton : Evidence for size-selective grazing. Kor. J. Limnol., 29, pp. 363-378.
  22. Hwang, S. J., Kim, H. S., and Shin, J. K. (2001). Filter feeding effects of a freshwater bivalve(Corbicula leana PRIME) on phytoplankton. Kor. J. Limnol., 34, pp. 298-309.
  23. Hwang, S. J., Kim, H. S., Shin, J. K., Oh, J. M., and Kong, D. S. (2004). Grazing effects of a freshwater bivalve (Corbicula leana PRIME) and large zooplankton on Phytoplankton communities in two Korean lakes. Hydrobiologia, 515, pp. 161-179.
  24. Jorgensen, B. C., Famme, P., Kristensen, H. S., Larsen, P. S., Mohlenberg, F., and Riisgard, H. U. (1986). The bivalve pump. Mar. Ecol. Prog. Ser., 34, pp. 69-77. https://doi.org/10.3354/meps034069
  25. Kirby-smith, W. W. (1972). Growth of the bay scallop: the influence of experimental water currents. J. Exp. Mar. Biol. Ecol., 8, pp. 7-18. https://doi.org/10.1016/0022-0981(72)90051-2
  26. Leverses, G. J. (1976). Flow and feeding in fan shaped colonies of the gorgonian coral Leptogorgia. Biol. Bull., 151, pp. 344-356 https://doi.org/10.2307/1540667
  27. McFadden, C. S. (1986). Colony fission increase particle capture rates of a soft coral: advantages of being a small canopy. J. Exp. Mar. Biol. Ecol., 103, pp. 1-20. https://doi.org/10.1016/0022-0981(86)90129-2
  28. Mclvor, A. L. (2004). Freshwater mussels as biofilters. Ph.D. thesis. Pembroke College.
  29. Nalepa, T. F. and Schloesser, D. W. (1993). Zebra mussels: Biology, impacts and control. Lewis, Boca Raton, Florida.
  30. Neumann, D. and Jenner, H. A. (1992). The zebra mussel-Ecology, Biological Monitoring and First Applications in the Water Quality Management. Gustav Fischer, New York.
  31. Reeder, H. H. and Bij de Vaate, A. (1990). Zebra mussel (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia, 200/201, pp. 437-450. https://doi.org/10.1007/BF02530361
  32. Sprung, M. and Rose, U. (1988). Influence of food size and food quality of the feeding of the mussel Dreissena polymorpha. Oecologia, 77, pp. 526-532. https://doi.org/10.1007/BF00377269
  33. Welker, M. and Walz, N. (1998). Can mussels control the plankton in rivers?- A planktonological approach applying a Lagrangian sampling strategy. Limnol. Oceanogr., 43, pp. 753-762. https://doi.org/10.4319/lo.1998.43.5.0753
  34. Wildish, D. J. and Saulnier, A. M. (1992). The effect of velocity and flow direction on the growth of juvenile and adult giant scallops. J. Exp. Mar. Biol. Ecol., 133, pp. 133-143.