Simple Material Budget Modeling for a River-Type Reservoir

하천형 저수지의 단순 물질수지 모델링

  • Yoon, Seong-Kyu (Department of Major in Civil and Environmental System Engineering, Hanyang University) ;
  • Kong, Dong-Soo (Department of Life Science, Kyonggi University) ;
  • Bae, Wookeun (Department of Major in Civil and Environmental System Engineering, Hanyang University)
  • 윤성규 (한양대학교 건설환경공학과) ;
  • 공동수 (경기대학교 생명과학과) ;
  • 배우근 (한양대학교 건설환경공학과)
  • Received : 2009.11.03
  • Accepted : 2010.03.17
  • Published : 2010.05.30

Abstract

Simple material budget models were developed to predict the dry season water quality for a river-type reservoir in Paldang, Republic of Korea. Of specific interest were the total phosphorus (TP), chlorophyll ${\alpha}$ (Chl. ${\alpha}$), 5-day biochemical oxygen demand (BOD), and chemical oxygen demand (COD). The models fit quite well with field data collected for 20 years and have enabled the identification of the origins of organic materials in the reservoir. The critical hydraulic load that determines the usability of phosphorus for algal production appeared to be about $1.5m\;d^{-1}$. When a hydraulic load was smaller than the critical value, the concentrations of $Chl.{\alpha}$, COD, and BOD in the reservoir water became sensitive to internal algal reactions such as growth, degradation, and settling. In spite of the recent intensive efforts for organic pollutant removal from major point sources by central and local governments, the water quality in the reservoir had not been improved. Instead, the concentration of COD increased. The model analysis indicated that this finding could be attributed to the continuing increase of the algal production in the reservoir and the allochthonous load from non-point sources. In particular, the concentrations of COD and BOD of algal origin during 2000~2007, each of which is comprised of approximately one half of the total, were approximately 2.5 times higher than those observed during 1988~1994 and approximately 1.3 times higher than those between 1995~1999. The results of this study suggested that it is necessary to reduce the algal bloom so as to improve the water quality of the reservoir.

하천형 저수지인 팔당호의 건기시 수질을 모의하기 위하여 단순 물질수지 모델을 개발하였다. 대상 물질은 총인 (TP), 클로로필${\alpha}$ ($Chl.{\alpha}$), 5일 생물학적 산소 요구량 (BOD) 화학적 산소요구량 (COD)이었다. 모델은 지난 20년간의 실측치를 잘 재현하였으며 유기물질의 성인을 밝히는데 이용될 수 있었다. 모델을 통하여 분석한 결과, 팔당호에서 인에 대한 조류의 이용성을 결정하는 임계 수리부하는 약 $1.5m\;d^{-1}$로 나타났다. 팔당호의 $Chl.{\alpha}$, COD, BOD 농도는 임계부하보다 작은 수리부하의 조건에서 생산과 호흡 및 침전과 같은 조류의 변화에 민감하게 반응하였다. 최근 유기오염 저감을 위한 중앙정부와 지방정부의 강도 높은 노력에도 불구하고 팔당호의 수질은 크게 개선되지 않았으며 오히려 COD 농도는 증가하였다. 모델 해석을 통하여 이는 조류 생산량의 증가와 아울러 비점오염원 등에서 외래성 부하가 증가하였기 때문인 것으로 나타났다. 특히 2000~2007년 기간의 조류 기원성 유기물 농도는 전체 유기물 농도의 절반에 해당하는 것으로 추정되었으며, 이는 1988~1994년 기간에 비하여 2.5배, 1995~1999년 기간에 비하여 1.3배에 달하는 수준이었다. 이러한 연구의 결과는 팔당호의 수질개선을 위해서는 조류 발생을 억제하는 것이 필요함을 시사하는 것이었다.

Keywords

References

  1. Ambrose, R. B., Wool, T. A., and Martin, J. L. (1993). The Water Quality Analysis Simulation Program, WASP5 Part A: Model documentation, EPA.
  2. APHA (2005). Standard Melhods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington.
  3. Bae, W. and Rittmann, B. E. (1996). A structured model of dual-limitation kinetics. Biotechnology & Bioengineering, 49(6), pp. 683-689. https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<683::AID-BIT10>3.3.CO;2-E
  4. Chapra, S. C. (1975). Comment on an empirical method of estimating the retention of phosphorus in lakes. Water Resources Research, 11(6), pp. 1033-1034. https://doi.org/10.1029/WR011i006p01033
  5. Dillon, P. J. and Kirchner, W. B. (1975). Reply to comment by S.C. Chapra. Water Resources Research, 11, pp. 1035-1036. https://doi.org/10.1029/WR011i006p01035
  6. Dillon, P. J. and Rigler, F. H. (1976). A test of nutrient budget model predicting the phosphorus concentration in lake water. J. Fish. Res. Board Can., 33, pp. 1742-1750. https://doi.org/10.1139/f76-221
  7. Heo, W. M., Kim, B., Ahn, T. S., and Lee, K. J. (1992). Phosphorus loadings from watershed and fishfarms into Lake Soyang and the phosphorus budget. Kor. J. Lim., 25(4), pp. 207-214.
  8. James, A. (1984). An Introduction to Water Quality Modeling, Wiley-Interscience Publication.
  9. Jorgensen, S. E. (1976). A eutrophication model for a lake. Ecological Modelling, 2, pp. 147-165. https://doi.org/10.1016/0304-3800(76)90030-2
  10. Kalff, J. (2002). Limnology, Prentice Hall.
  11. Kennedy, R. H. and Walker, W. W. (1990). Reservoir nutrient dynamics. Reservoir Limnology: Ecological Perspectives, K. W. Thornton et al., Wiley-Interscience, pp. 109-131.
  12. Kim, J. K., Shin, M., Jang, C., Jung S., and Kim, B. (2007). Comparison of TOC and DOC distribution and the oxidation efficiency of BOD and COD in several reservoirs and rivers in the Han River system. Jour. Kor. Soc. Wat. Qual., 23(1), pp. 72-80.
  13. Kirchner, W. B. and Dillon, P. J. (1975). An empirical method of estimating the retention of phosphorus in lakes. Wat. Resour. Res., 11(1), pp. 182-183. https://doi.org/10.1029/WR011i001p00182
  14. Klein, L. (1973). River Pollulion, part 1. Chemical Analysis, 6th. ed. London: Butter worth.
  15. Kong, D. S. (1992). Limnological and Ecological Characteristics of Lake Paldang, Korea University, Ph.D thesis.
  16. Kong, D. S. (1997). Limnological and ecological characteristics of a river-reservoir (Paldang), Korea. Kor. J. Lim., 30, pp. 524-535.
  17. Larsen, D. P., Schults, D. W., and Malueg, K. W. (1981). Summer internal phosphorus supplies in Shagawa Lake, Minesota. Limnol. Oceanogr., 26, pp. 740-753. https://doi.org/10.4319/lo.1981.26.4.0740
  18. Lorenzen, M. W. (1980). Use of chlorophyll-Secchi disk relationship. Limnol. Oceanogr., 25, pp. 371-372. https://doi.org/10.4319/lo.1980.25.2.0371
  19. Megard, R. O., Settles, J. C., Boyer, H. A., and Combs, W. S. (1980). Light, Secchi disk, and trophic states. Limnol. Oceanogr., 25, pp. 373-377. https://doi.org/10.4319/lo.1980.25.2.0373
  20. Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology, 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  21. Orlob, G. T. (1983). Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs, Wiley-Interscience.
  22. Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963). The influence of organisms on the composition of seawater. The Sea, 2, M.N. Hill, Interscience.
  23. Talling, J. F. (1957). Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytologist, 56, pp. 29-50. https://doi.org/10.1111/j.1469-8137.1957.tb07447.x
  24. Thornton, K. W., Kimmel, B. L., and Payne, F. E. (1990). Reservoir Limnology: Ecological Perspectives, Wiley-Interscience.
  25. Vollenweider, R. A. (1975). Input-output models with special reference to the phosphorus loading concept in limnology. Schwei. for Hydro., 37, pp. 53-84. https://doi.org/10.1007/BF02505178
  26. Vollenweider, R. A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol., 33, pp. 53-83.
  27. Vollenweider, R. A. and Kerekes, J. (1982). Eutrophication of Waters. Monitoring. Assessment and Control. OECD Cooperative programme on monitoring of inland waters, OECD.
  28. Wetzel, R. G. (1983). Limnology 2nd ed., Philadelphia: Saunders Coll. Pubbl.
  29. Winston, W. E. and Criss, R. E. (2002). Geochemical variations during flash flooding, Meramec River basin, May 2000. Journal of Hydrology, 265, pp. 149-163. https://doi.org/10.1016/S0022-1694(02)00105-1