Soft Sensor Design Using Image Analysis and its Industrial Applications Part 2. Automatic Quality Classification of Engineered Stone Countertops

화상분석을 이용한 소프트 센서의 설계와 산업응용사례 2. 인조대리석의 품질 자동 분류

  • Ryu, Jun-Hyung (Department of Energy & Environmental Systems, Dongguk University) ;
  • Liu, J. Jay (Department of Chemical Engineering, Pukyong National University)
  • 류준형 (동국대학교 에너지환경시스템학부) ;
  • 유준 (부경대학교 화학공학과)
  • Received : 2010.03.27
  • Accepted : 2010.04.19
  • Published : 2010.08.31

Abstract

An image analysis-based soft sensor is designed and applied to automatic quality classification of product appearance with color-textural characteristics. In this work, multiresolutional multivariate image analysis (MR-MIA) is used in order to analyze product images with color as well as texture. Fisher's discriminant analysis (FDA) is also used as a supervised learning method for automatic classification. The use of FDA, one of latent variable methods, enables us not only to classify products appearance into distinct classes, but also to numerically and consistently estimate product appearance with continuous variations and to analyze characteristics of appearance. This approach is successfully applied to automatic quality classification of intermediate and final products in industrial manufacturing of engineered stone countertops.

본 연구에서는 화상분석(image analysis)에 기반한 소프트 센서를 설계하고, 이를 색상-질감 특성을 가진 제품의 외관품질 자동분류에 적용하였다. 색상과 질감(texture)을 동시에 가진 화상을 분석하기 위해 다중해상도 다변량 화상분석(Multiresolutional Multivariate Image Analysis, MR-MIA) 기법을 이용하였으며, 자동 분류를 위한 감독 학습법(supervised learning)으로는 Fisher의 판별분석(Fisher's discriminant analysis)을 사용하였다. 잠재변수법의 하나인 Fisher의 판별분석을 사용하였기 때문에, 제품의 외관을 서로 다른 불연속적인 부류로의 분류할 수 있을 뿐 아니라, 연속적인 외관 변화를 일관적이고 정량적으로 추정함은 물론, 외관의 특성 해석 또한 가능하였다. 이 방법은 인조대리석 제조 공정에서 중간 및 최종 제품의 외관 품질을 자동으로 분류하는 데에 성공적으로 적용되었다.

Keywords

References

  1. Holtham, P. N. and Nguyen, K. K., "On-line Analysis of Froth Surface in Coal and Mineral Flotation Using JKFrothCam," Int. J. Miner. Process., 64, 163-180(2002). https://doi.org/10.1016/S0301-7516(01)00070-9
  2. Kaartinen, J., Hotonen, J., Hyotyniemi, H. and Miettunen, J., "Machine-vision-based Control of Zinc Flotation-A Case Study," Control Eng. Practice, 14, 1455-1466(2006). https://doi.org/10.1016/j.conengprac.2005.12.004
  3. Liu, J., "Soft Sensor Design Using Image Analysis and Its Industrial Applications Part 1. Estimation and Monitoring of Product Appearance," Korean Chem. Eng. Res., 48(4), 475-782(2010).
  4. Kim, D., Han, C. and Liu, J. J., "Optimal Wavelet Packets for Characterizing Surface Quality," Ind. Eng. Chem. Res., 48(5), 2590-2597(2009). https://doi.org/10.1021/ie800536g
  5. Liu, J. J. and MacGregor, J. F., "Modeling and Optimization of Product Appearance: Application to Injection-molded Plastic Panels," Ind. Eng. Chem. Res., 44, 4687-4696(2005). https://doi.org/10.1021/ie0492101
  6. Liu, J. J. and MacGregor, J. F., "On the Extraction of Spectral and Spatial Information from Images," Chemometrics Intell. Lab. Syst., 85(1), 119-130(2007). https://doi.org/10.1016/j.chemolab.2006.05.011
  7. Fisher, R. A., "The Use of Multiple Measurements in Taxonomic Problems," Annals of Eugenics, 7(II), 179-188(1936). https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
  8. Geladi, P. and Grahn, H. Multivariate Image Analysis, John Wiley & Sons, Chichester, UK(1996).
  9. Mallat, S. G., "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674-693(1989). https://doi.org/10.1109/34.192463
  10. Bharati, M., MacGregor, J. F. and Champagne, M., "Using Nearinfrared Multivariate Image Regression Techniques to Predict Pulp Properties," TAPPI J., 3, 8-14(2004).
  11. Yu, H. and MacGregor, J. F., "Monitoring Flames in an Industrial Boiler Using Multivariate Image Analysis," AIChE J., 50(7), 1474-148(2004). https://doi.org/10.1002/aic.10164
  12. Pereira, A. C., Reis, M. S. and Saraiva, P. M., "Quality Control of Food Products using Image Analysis and Multivariate Statistical Tools," Ind. Eng. Chem. Res., 48(2), 988-998(2009). https://doi.org/10.1021/ie071610b
  13. Bharati, M., Liu, J. J. and MacGregor, J. F., "Image Texture Analysis: Methods and Comparisons," Chemometrics and Intelligent Laboratory Systems, 72(1), 57-71(2004). https://doi.org/10.1016/j.chemolab.2004.02.005
  14. Geladi, P., "Some Special Topics in Multivariate Image Analysis," Chemometrics and Intelligent Laboratory Systems, 14, 209-220(1992). https://doi.org/10.1016/0169-7439(92)80105-D
  15. Lied, T. T., Geladi, P. and Esbensen, K., "Multivariate Image Regression (MIR): Implementation of Image PLSR-first Forays," J. Chemometrics, 14, 585-598(2000). https://doi.org/10.1002/1099-128X(200009/12)14:5/6<585::AID-CEM627>3.0.CO;2-Q
  16. Vetterli, M. and Kovacevic, J., Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs(1995).
  17. Duda, R. O., Hart, P. E. and Stork, D. G., Pattern Classification. 2nd ed., Wiley-Interscience, New York(2001).
  18. Demirkol, A., Demir, Z. and Emre, E. A., "New Classification Approach using Discriminant Functions," Journal of Information Science and Engineering, 21, 819-828(2005).
  19. Van de Wouwer, G. Wavelets for Multiscale Texture Analysis, Ph.D Thesis, University of Antwerp, Antwerp, Belgium(1998).