PEG 마이크로 섬유 제조를 위한 마이크로플루이딕 제조방법

In situ Microfluidic Method for the Generation of Uniform PEG Microfiber

  • 최창형 (충남대학교 화학공학과) ;
  • 정재훈 (충남대학교 화학공학과) ;
  • 이창수 (충남대학교 화학공학과)
  • Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Jung, Jae-Hoon (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 투고 : 2010.03.23
  • 심사 : 2010.04.27
  • 발행 : 2010.08.31

초록

본 연구는 간편한 마이크로플루이딕 칩을 이용하여 매우 균일한 PEG 마이크로섬유 제작방법을 소개한다. 두 섞이지 않는 상의 주입을 통하여, 연속상의 덮개유동(sheath flow)이 분산상의 안정된 늘어지는 유동(Elongated flow)을 형성하고 채널 내부에 자외선 조사를 통해 고분자 마이크로섬유가 형성되도록 한다. 안정된 마이크로 유동형성의 최적화를 위해 각 사용되는 분산상 유체의 부피유속과 케필러리 수의 상관관계를 이용하여 조사하고 이를 이용하여 최적조건을 확립하였다. 안정된 유동영역에서 형성된 마이크로섬유는 매우 균일하며 재현성이 우수하다. 중요하게는 부피제어를 통해 마이크로섬유의 두께 제어가 가능하며 이를 이용하여 원하는 두께를 손쉽게 얻을 수 있다. 또한, 이와 같은 시스템을 통해 얻어진 마이크로섬유에 물리적으로 생체물질을 고정화하여 바이오센서 및 조직공학에서 적용 가능한 도구로 사용될 수 있음을 보여준다.

In this study, we presents a simple microfluidic approach for generating uniform Poly(ethylene glycol)(PEG) microfiber. Elongated flow pattern of monomer induced by sheath flow of immiscible oil as continuous phase is generated in Y-shape junction and in situ polymerization by UV exposure. For uniform microfiber, we investigate the optimized flow condition and draw phase diagram as function of Ca and Qd. At the region for stable elongated flow pattern, the microfiber generated in microfluidic chip is very uniform and highly reproducible. Importantly, the thickness of microfibers can be easily controlled by flow rate of continuous and disperse phase. We also demonstrate the feasibility for biological application as encapsulating FITC-BSA in PEG microfiber.

키워드

참고문헌

  1. Teo, W. and Ramakrishna, S., "Electrospun Nanofibers as a Platform for Multifunctional, Hierarchically Organized Nanocomposite," Compos. Sci. Technol., 69, 1804-1817(2009). https://doi.org/10.1016/j.compscitech.2009.04.015
  2. Cooper, J. A., Lu, H. H., Ko, F. K., Freeman, J. W. and Laurencin, C. T., "Fiber-based Tissue-engineered Scaffold for Ligament Replacement: Design Considerations and in vitro Evaluation," Biomaterials, 26, 1523-1532(2005). https://doi.org/10.1016/j.biomaterials.2004.05.014
  3. Shin, H. J., Lee, C. H., Cho, I. H., Kim, Y. J., Lee, Y. J., Kim, I. A., Park, K. D., Yui, N. and Shin, J. W., "Electrospun PLGA Nanofiber Scaffolds for Articular Cartilage Reconstruction: Mechanical Stability, Degradation and Cellular Responses Under Mechanical Stimulation in vitro," J. Biomater. Sci. Polym. Ed., 17, 103-119(2006). https://doi.org/10.1163/156856206774879126
  4. Luu, Y. K., Kim, K., Hsiao, B. S., Chu, B. and Hadjiargyrou, M., "Development of a Nanostructured DNA Delivery Scaffold Via Electrospinning of PLGA and PLA-PEG Block Copolymers," J. Controlled Release, 89, 341-353(2003). https://doi.org/10.1016/S0168-3659(03)00097-X
  5. Chae, S. K., Park, H., Yoon, J., Lee, C. H., Ahn, D. J. and Kim, J. M., "Polydiacetylene Supramolecules in Electrospun Microfibers: Fabrication, Micropatterning, and Sensor Applications," Adv. Mater., 19, 521-524(2007). https://doi.org/10.1002/adma.200602012
  6. Dror, Y., Kuhn, J., Avrahami, R. and Zussman, E., "Encapsulation of Enzyme in Biodegradable Tubular Structures," Macromolecule, 41, 4187-4192(2007).
  7. Yuan, X. Y., Mak, A. F. T., Kwok, K. W., Yung, B. K. O. and Yao, K. J., "Characterization of Poly(L-lactic acid) Fibers Produced by Melt Spinning," Appl. Polym. Sci., 81, 251-260(2001). https://doi.org/10.1002/app.1436
  8. Ha, S. W., Tonelli, A. E. and Hudson, S. M., "Structural Studies of Bombyx mori Silk Fibroin during Regeneration from Solutions and Wet Fiber Spinning," Biomacromolecules, 6, 1722-1731(2005). https://doi.org/10.1021/bm050010y
  9. Sang, Y., Gu, Q., Sun, T., Li, F. and Liang, C., "Filtration by a Novel Nanofiber Membrane and Alumina Adsorption to Remove Copper(II) from Groundwater," J. Hazard. Mater., 153, 860-866(2008). https://doi.org/10.1016/j.jhazmat.2007.09.035
  10. Wang, Y., Cheng, R., Liang, L. and Wang, Y., "Study on the Preparation and Characterization of Ultra-high Molecular Weight Polyethylene-Carbon Nanotubes Composite Fiber," Compos. Sci. Technol., 65,793-797(2005). https://doi.org/10.1016/j.compscitech.2004.10.012
  11. Doshi, J. and Reneker, D. H., "Electrospinning Process and Applications of Electrospun Fibers," J. Electrost., 35, 151-160(1995). https://doi.org/10.1016/0304-3886(95)00041-8
  12. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. and Weitz, D. A., "Monodisperse Double Emulsions Generated from a Microcapillary Device," Science, 308, 537-541(2005). https://doi.org/10.1126/science.1109164
  13. Jeong, W. J., Kim, J. Y., Kim, S. J., Lee, S. H., Mensing, G. and Beebe, D. J., "Hydrodynamic Microfabrication via on the Fly, Photopolymerization of Micro Scale Fibers and Tubes," Lab Chip, 4, 576-580(2004). https://doi.org/10.1039/b411249k
  14. Choi, C. H., Jung, J. H., Hwang, T. S. and Lee, C. S., "In situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17, 163-167(2009). https://doi.org/10.1007/BF03218673
  15. Choi, C. H., Jung, J. H., Kim, D.-W., Chung, Y. M. and Lee, C. S., "Novel One-pot Route to Monodisperse Thermosensitive Hollow Microcapsules in Microfluidic System," Lab chip, 8, 1544-1551(2008). https://doi.org/10.1039/b804839h
  16. Schindler, M. and Ajdari, A., "Droplet Traffic in Microfluidic Networks: A Simple Model for Understanding and Designing," Phys. Rev. Lett., 100, 04450(2008).
  17. Nisisako, T. and Torii, T., "Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles," Adv. Mater., 19, 1489-1493(2007). https://doi.org/10.1002/adma.200700272
  18. Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C. and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors," J. Am. Chem. Soc., 127, 8058-8063(2005). https://doi.org/10.1021/ja042494w
  19. Choi, C. H., Jung, J. H., Rhee, Y. W., Kim, D. P., Shim, S. E. and Lee, C. S., "Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device," Biomed. Microdevices, 9, 855-862(2007). https://doi.org/10.1007/s10544-007-9098-7
  20. Mellott, M. B., Searcy, K. and Pishko, M. V., "Release of Protein from Highly Cross-linked Hydrogels of Poly(ethylene glycol) Diacrylate Fabricated by UV Polymerization," Biomaterials, 22, 929-941(2001). https://doi.org/10.1016/S0142-9612(00)00258-1