Abstract
Anthropometry has been broadly explored in various fields including automobile industry, home electronic appliances, medical appliances and sports goods with aiming at reaching satisfaction to consumer's need and efficiency. However, current technologies to measure a human body still have barriers in which the methods mostly seem to be contingent on expensive devices such as scanner and digital measuring instruments and to be directly touchable to the body when obtaining body size.. Therefore, in this paper, we present a general method to automatically extract size of body from a real body image acquired from a camera and to utilize it into recommend systems including clothing and bicycle fitting. At first, Haar-like features and AdaBoost algorithm are employed to detect body position. Then features of body can be recognized using AAM. Finally clothing and bicycle recommending modules have been implemented and experimented to validate the proposed method.
인체측정학(Anthropometry)은 자동차, 가전제품, 의료기기 및 스포츠 용품 등 다양한 분야에서 소비자의 만족도와 사용 효율성을 최적화하기 위해 조사되고 연구되어 왔다. 하지만 아직까지 인체 측정 방식은 계측자를 이용한 직접측정 또는 스캐너나 디지털 측정기 등 고가의 장치에 의존적인 방법에서 벗어나지 못하고 있다. 따라서 본 연구는 사진으로부터 신체인식 알고리즘을 이용하여 신체사이즈를 자동으로 추출하고, 의류추천 및 자전거 피팅사이즈 서비스 등에 활용가능성을 제시한다. 이를 위해 Haar-like features와 AdaBoost 알고리즘을 이용하여 빠른 속도와 높은 정확도로 영상콘텐츠 내에서 신체 영역을 검출한다. 이후 AAM(Active Appearance Model)을 이용하여 특징점을 검출하고 도출된 측정치에 최적화된 상품을 추천하는 지능형 모듈 시스템을 구현하고 성능평가를 제시한다.