Abstract
Text categorization is one of important features in information searching system which classifies documents according to some criteria. The general method of categorization performs the classification of the target documents by eliciting important index words and providing the weight on them. Therefore, the effectiveness of algorithm is so important since performance and correctness of text categorization totally depends on such algorithm. In this paper, an enhanced method for text categorization by improving word weighting technique is introduced. A method called Okapi BM25 has been proved its effectiveness from some information retrieval engines. We applied Okapi BM25 and showed its good performance in the categorization. Various other words weights methods are compared: TF-IDF, TF-ICF and TF-ISF. The target documents used for this experiment is Reuter-21578, and SVM and KNN algorithms are used. Finally, modified Okapi BM25 shows the most excellent performance.
문서 범주화는 정보검색 시스템의 중요한 기능중의 하나로 문서들을 어떤 기준에 의해 그룹화를 하는 것을 말한다. 범주화의 일반적인 방법은 대상 문서에서 중요한 단어들을 추출하고 가중치를 부여한 후에 분류 알고리즘에 따라 문서를 분류한다. 따라서 성능과 정확성은 분류 알고리즘에 의해 결정됨으로 알고리즘의 효율성이 중요하다. 본 논문에서는 단어 가중치 계산 방법을 개선하여 문서분류 성능을 향상시키는 것을 소개하였다. Okapi BM25 단어 가중치법은 일반적인 정보검색분야에서 사용되어 검색 결과에 좋은 결과를 보여주고 있다. 이를 적용하여 문서 범주화에서도 좋은 성능을 보이는지를 실험하였다. 비교한 단어 가중치법에는 가장 일반적인 TF-IDF법와 문서분류에 최적화된 가중치법 TF-ICF법, 그리고 문서요약에서 많이 사용되는 TF-ISF법을 이용하여 4가지 가중치법에 따라 결과를 측정하였다. 실험에 사용한 문서로는 Reuter-21578 문서를 사용하였으며 분류기 알고리즘으로는 Support Vector Machine(SVM)와 K-Nearest Neighbor(KNN)알고리즘을 사용하여 실험하였다. 사용된 가중치법 중 Okapi BM25 법이 가장 좋은 성능을 보였다.